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Relaxation kinetics of stretched disclination lines in a nematic liquid crystal
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The dynamics of disclination defect lines in a nematic liquid crystal are measured experimentally and
considered theoretically. An optical trap is used to deform the line, enabling the previously unexplored regime
of large deformation to be accessed. The relaxation follows a linear decay at large amplitude, crossing over into
the well understood exponential decay at small amplitude. Both regimes can be described by simple theoretical
arguments. The crossover point is well described by the theory, but the experiments show a faster than
expected dynamics, indicating that the effective viscosity in the models is overestimated.
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I. INTRODUCTION

In the same way that hard condensed matter crystals can
be made more interesting and useful by doping to induce
defects and irregularities, the presence of defects in liquid
crystalline (LC) phases opens up a playground for soft matter
physics, with the prospect of a better understanding of the
material properties and ultimately the possibility of new ap-
plications. Topological defects can occur as metastable states
during symmetry breaking phase transitions, or they can be
induced under external fields or as equilibrium structures
nucleated by impurities. Today there is a renewed interest in
topological defects and especially their dynamics, motivated
by their role in liquid crystal/colloidal particle composites.
Colloidal inclusions alter the otherwise homogeneous direc-
tor field and give rise to structural forces not observable in
ordinary fluids [1-3]. The results of long range structural
forces are fascinating self-ordered colloidal structures, such
as chains [4], two-dimensional (2D) crystals [5], regular ar-
rays of defects etc. (for a review see [3,6]).

The simplest LC phase is the uniaxial nematic; line de-
fects are referred to as disclinations. Defects in LC phases
can usually be directly observed in polarized optical micros-
copy. In general the study of the shape and dynamics of
defects provides a powerful tool to probe the material prop-
erties: elastic constants and viscosities. In particular the dy-
namics of a disclination movement offers a route to under-
stand the orientational friction and viscous coefficients in
liquid crystals. The first attempt to study friction this way
was by Imura and Okano [7], who obtained a closed expres-
sion for the friction force acting on a disclination line if it
were to move with a constant velocity in the nematic matrix.
This result was later improved in different ways (e.g., [8])
and has led to famous results on the dynamics of disclination
coarsening (showing that the mesh size of a disclination net-
work decreases as [~ ") [9] or direct measurements of con-
tracting disclination loops (the loop radius decreasing as R
~112) [10].

A particularly useful tool to manipulate the colloids and
defects in LC are laser tweezers. Contrary to what happens in
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simple fluids, colloids can be trapped and manipulated even
though the index of refraction of the particles is lower than
both indices of refraction of the surrounding nematic matrix
[11]. Two mechanisms are known to be responsible for such
anomalous trapping: (a) surface-induced distortion of the bi-
refringent media around the particle creates a high-index
cloud around the colloid, and (b) laser induced distortion or
(partial) melting of a nematic, which creates a “ghost col-
loid” at the focal spot. The focused laser beam can also move
director structures and defects [12,13]. At low-laser power,
the trapping is mediated by optical gradient forces exerted by
a focused beam on the structures with spatially varying mo-
lecular orientations. When manipulation is done with high-
intensity beams (j >4 X 10° W/m?) the tightly focused po-
larized laser beam locally reorients the director and causes an
optical Freedericks transition. The elastic structural forces
arise to minimize the distortions in the elastic LC medium.

In this paper, we present a simple experimental system
which allows us to test basic theories of disclination energy
and dissipative motion. We use a focused laser beam to
stretch and otherwise deform defect lines, and we measure
the kinetics of their motion in a planar cell of nematic liquid
crystal. We test our system on a classical contracting-loop
dynamics and then measure the friction of confined defect
lines that relax to the equilibrium position.

II. THEORETICAL MODEL

The tension of a disclination line in bulk can be approxi-
mated by [14]:

L
T = 7Ks* In— + 770'(,r3, (1)

re

where K is the average Frank elastic constant (in the quali-
tatively meaningful one-constant approximation [14]), s the
strength of disclination and L is the effective size of the
system (the linear dimension of the region of director defor-
mations around the disclination line). Parameters r, and o,
represent the disclination core size and energy density, re-
spectively.

When a disclination line moves through the director field,
it experiences an effective dissipative friction with the force
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FIG. 1. Schematic view of the forces acting on a disclination in
two deformation modes. T is the tension, F is the net friction force,
h is the distance between tip and the equilibrium position, /; is the
equilibrium length of the disclination. (a) Triangular mode and (b)
Overstretched disclination model (v and dF are the local velocity
and friction force acting on a short segment of disclination).

per unit length acting perpendicular to the line. In the same
approximations as the basic expression for the disclination
line tension [Eq. (1)] the friction coefficient is given by the
Imura-Okano expression [7]:

R = rys? lné, (2)
c
with vy being the rotational viscosity coefficient of the nem-
atic. If a straight segment of a disclination line of length dI is
moving through surrounding medium with velocity v and
angle ¢ between v and the segment, then the frictional force
dF acts perpendicular to the segment and is given by:

dF =Rv dl=Ruv cos ¢dl. (3)

If a middle point of an initially straight disclination of
equilibrium length [, is pulled a distance h, away from the
equilibrium position, the line shape becomes triangular (the
defect line is straightened under tension between the tip of
the disclination and pinning points), as sketched in Fig. 1(a).
The relaxation of a stretched disclination back to its equilib-
rium position can be modeled as a motion of an overdamped
(massless) string. Assuming that the triangular shape is pre-
served during the relaxation, the time dependence of the dis-
tance h(r) between the tip of the disclination and its equilib-
rium position can be calculated analytically. The velocity
v(x) of a line segment is given by the linear proportionality,
v(x)=(dh/dr)(2x/1,). The total friction F acts perpendicular
to the disclination line and its magnitude for one half of the
defect line is given by adding together all elements of dF for
dl=dx cos ¢:

W2 gnox
F=JRdel=f R—=—dx
0 dt 1

Rlydh
=2 @
4 dt

During the movement of the disclination, the y components
of the tension and the friction must have the same magni-
tude: Tsin ¢=Fcos ¢, or equivalently Th=(ly/2)F
=(l§/8)R(dh/ dr). This relationship describes the simple ex-
ponential relaxation of A(r) with the solution:

h(t) = hye™", (5)

with the characteristic relaxation rate 7 !=87T/ ISR.
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FIG. 2. (Color online) Numerical solution for the relaxation of
parabolic shape. In nondimensional units, the equilibrium length of
the disclination was taken as /y=2, the initial displacement of the tip
h(0)=1 and the ratio between tension and friction 7/R=1. Two
distinct phases of relaxation can be easily deduced. The data from
t=0 to r=0.6 is fitted by the linear decay, while the final approach to
equilibrium (data from ¢=0.6 to r=2.5) is fitted by the simple
exponential.

The other limiting case is the relaxation of an over-
stretched disclination [sketched in Fig. 1(b) and shown in the
top-most image of Fig. 5 below], where the length of the
stretched defect line is significantly longer than the length of
equilibrated disclination /,. In this case the size of the “hair-
pin” (the approximately semi-circular disclination region ori-
ented at an angle to the direction of movement) remains con-
stant during the main part of the relaxation. The total
frictional force is produced by this hairpin region only and
obtained by integrating the elements dF along the arc pro-
jected upon the axis:

mREdh
4 dt’

(6)

where £ is the width of the hairpin. By equating the total
friction force and the tension acting on both ends of the
hairpin segment, one obtains the differential equation de-
scribing its motion: j—lwfR(dh/ dr)=2T. The conclusion is that
the retraction of the overstretched disclination, A(z), proceeds
linearly with time,

/2 dh 5 g
F=] Rv (l)cos @dl = R—cos” o=do=
—17/2 dt 2

h(t) = ho - kt, (7)

with the rate of retraction given by k=87/w{R. Note that in
all cases the rate of relaxation is determined by the ratio of
the disclination tension to the friction coefficient.

We have also modeled the disclination relaxation process
by using the parabolic rather than triangular shape of the
stretched line as an example of a more complex model that is
closer to experimental observation. The assumption of the
model is that the shape of the disclination remains parabolic
during the whole relaxation to equilibrium, i.e., the shape at
some given h can be described by y(x,h)=h(4x?/[5~1).
Such a problem is harder to solve analytically, but numerical
solution reveals two different regimes of A(z): the initial lin-
ear part of the relaxation, followed by an exponential decay.
Figure 2 shows the time evolution of A(¢) for a disclination of
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parabolic shape. The relaxation of A(r) starts as a linear func-
tion which smoothly crosses over to an exponential decay at
around 7=0.6. The slope of linear decay k and characteristic
relaxation time 7 of the parabolic model have prefactors that
are close to those obtained in the simple models described
above. For example, the relaxation time in the parabolic
model is 7= Z%R/ 12T, which is 33% less than 7 in the simple
linear model. Considering that in practice the quantities T
and R carry a large experimental uncertainty, and that our
theoretical treatment is done in the realm of the one-elastic
constant approximation, even the simple models seem an ap-
propriate description of the relaxation.

III. EXPERIMENTAL METHODS

The negative photoresist SU-8 (Microchem Corp, MA,
USA) was employed to create 15 um deep regions on
cleaned standard glass microscope slides. The regions were
then filled with nematic liquid crystal mixture E7 (Merck,
Darmstadt, Germany) with average refractive index n;
~ 1.6, birefringence on=0.2, and rotational viscosity v,
=0.19 Pas. The upper surface of LC was free (cells were
not covered) and no special treatment for surface alignment
was used. In these conditions, it is expected that the bottom
surface of contact with SU8 will have planar director, while
the top free surface will have a weak homeotropic anchoring.

To manipulate the LC defect we used a laser tweezers
setup made of a CW laser (IPG Photonics, PYL-1-1064-LP,
A=1064 nm, P,,,.=1.1 W) focused through a water immer-
sion objective (Zeiss, Achroplan IR 63x/0.90 W) in inverted
microscope configuration. A pair of acousto-optic deflectors,
driven by custom made electronics controlled by a personal
computer, was used to move the optical trap and change its
intensity. The sample was illuminated with a halogen lamp
and observed in bright field with a CMOS camera (Allied
Vision Technologies, Marlin F-131B) at a rate of 20 frames
per second. Further details on the experimental setup are
given in [15]. The positions of the defect lines were analyzed
off-line with image analysis software (Able Image Analyzer,
Mu Laboratories).

IV. RESULTS AND DISCUSSION

In our experiment, we used a high-intensity laser beam to
manipulate the defect lines. Ramping up from zero intensity,
first a laser spot becomes visible at certain threshold (ghost)
but it cannot manipulate the director structures; at around
100 mW of power focused to 1 um? the optical trap can be
used to push or pull a defect line. The optical force acting on
the disclination is laser power dependent. If the optical trap
is used to pull the mid point of a straight disclination into a
triangular configuration, the maximum achievable opening
angle 6,,,, of the triangle depends on the laser intensity. If
the trap is pulled even further away, the defect line snaps and
relaxes to equilibrium position. In Fig. 3, we show the de-
pendence of the maximum angle of the defect line as a func-
tion of laser beam intensity. When the laser power in the
sample is below 100 mW it cannot be used to pull the dis-
clination (i.e., the angle is 180 degrees). With increasing
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FIG. 3. There is a linear dependence between the maximum
amplitude of deformation and the applied laser power. The data
represent the maximum angle 6,,,, of the tip of disclination at each
laser trap power (measured at sample).

power the maximum achievable angle decreases and at
around 140 mW (in the case of the observed disclination) the
force is high enough to completely pull the tip of disclination
and drag it to an arbitrary position.

We believe that the main effect of the laser on the defect
structure is due to heating. The interaction force between
laser trap and the disclination is created by producing a ra-
dial distribution of the nematic order parameter around a
locally isotropic region created by IR laser heating, similar to
the report in [16] and to the well-known effect of colloidal
assembly on disclination lines which reduces the local core
energy.

First we tested our experimental setup on classical
contracting-loop dynamics. The laser beam was focused to a
dust particle with high IR absorption. The local heating of
the particle induced nematic to isotropic transition (limited to
a circular region with a size of a couple of tens of microme-
ters), and produced some long disclination lines around the
spot. When the laser beam was moved away from the ab-
sorbing particle, the isotropic region of LC was quenched
back to nematic phase in ~1 s. If any defect loop remained
after the quenching, we pulled it away from the dirt using the
laser tweezers, and started to observe its contraction.

In Fig. 4, we show the time evolution of the ellipsoidal
contracting loop. The time dependence of ellipsoidal major
a; and minor axis a, was fitted with the power-law function
ai(t) ZAOI'(IQ—I)‘Bi. We obtained B] =0.516 % 0005, and BZ
=0.490 = 0.006 which is in excellent agreement with theoret-
ical predictions [10].

The main focus of this paper is the relaxation of straight
disclination lines with their ends pinned either to SU-8 film
or to the glass surface. By using the focused laser beam, the
disclinations were pulled similarly to an elastic string. When
the optical trap was switched off, the disclinations started to
relax back to the equilibrium position. From the video we
measured the distance h(r) between the “tip” of the defect
line and the final position of the relaxed line as a function of
time. By observing the relaxation of different disclination
lines (different lengths, thicknesses of the liquid crystal layer,
pinning configurations) we found out that relaxations consist
of two stages. When the disclination is relaxed from a
strongly stretched state, the shape of the disclination hairpin
remains unchanged, and only the lines between the hairpin
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FIG. 4. (Color online) Contraction of ellipsoidal disclination
follows theoretical expectation. (a) Image sequence of contracting
loop. (b) The time evolution of the distance of long (circles) and t=2.39s B T
=2. —

short axes (squares) of ellipses. The data is fitted with power law
functions giving exponents B;=0.516*0.005 (red line) and B,
=0.490*0.006 (black line).

and the pinning points shorten (Fig. 1 right). The viscous
drag is constant in this process, therefore the disclination tip
approaches the equilibrium position with constant speed as
calculated in Eq. (7). As the disclination comes closer to the
equilibrium position, the shape of the disclination “cap” is
changing, and this modifies both the effective viscous drag
and the angle at which tension is pulling the disclination tip.
The h(r) shows an exponential decay in this stage [Eq. (5)].
If the disclination is relaxed from an only slightly stretched
state, then there is only one stage, that of exponential relax-
ation.

A series of micrographs of two typical relaxations of de-
fect lines are presented in Figs. 5 and 6. The relaxation of an
overstretched disclination with equilibrium length of [,
=65 wm, and the time dependence of the distance Ah(f) be-
tween relaxation tip and equilibrated position of the line, are
shown in Fig. 5. Both the initial linear and subsequent expo-
nential stages of relaxation can be clearly seen in the chart.

The set of data points at small times in Fig. 5 was fitted
with a linear function with slope k=—10.4*+0.2 um/s, the
set at large times was fitted with an exponential decay with
characteristic decay time 7=0.8 0.1 s. The ratio 6=T/R
between tension and friction coefficients is related to both
fitted values as &=mlpk/8=2.6X10""" m?/s and 6=13/87
=6.5%X 10710 m?/s.

A series of relaxation images of a just slightly stretched
disclination with equilibrium length /=107 wm in another
cell is presented in Fig. 6. In this case the evolution of A(z) is
a pure exponential decay, with 7=10.0 =0.2 s. The ratio be-
tween tension and friction coefficient in this case is &
=1.43x 10719 m?/s.

The tension and friction coefficient can be estimated di-
rectly from Egs. (1) and (2). Assuming that the topological

(@)

FIG. 5. (Color online) Relaxation of overstretched disclination
shows two regimes. (a) Brightfield images of disclination at differ-
ent times after relaxation. The laser spot is clearly seen below the
tip of the disclination in the top image. This disclination has [,
=65 um. (b) Time evolution of distance /(z) between ‘tip” of dis-
clination and its equilibrium position. The dotted line is a fit of the
experimental data (points 1-13) with a linear function of slope k=
—10.6%=0.3 um/s, the dashed line is an exponential fit (data points
13-19) with decay constant 7=0.72+0.06 s.

strength of observed disclinations is s=1/2 [20], the size of
system is around L=10 um, the average elastic constant and
rotational viscosity of E7 at room temperature are K
=13.5 pN and y=257 mPas [17], respectively; the radius
of the disclination core r.=5 nm and o, =K/ rf, which gives
the total tension of disclination 7=123 pN and the friction
coefficient R=1.5 Pas. The estimated ratio between tension
and friction is therefore 6=0.8 X 10710 m2/s, in reasonable
agreement with the experiments.

In Figs. 5 and 6, the pinning points are on the bottom
surface. We observe that the line can be moved freely and
repeatedly with the optical trap and that the relaxation is
smooth. This convinces us that the disclination line is not
itself pinned to the bottom, since one would expect in that
case a complex dynamics controlled by depinning events.
One aspect to consider is the position of the disclination line
relative to the bottom surface. If the disclination line is sepa-
rate, but close (of the order of the core size, i.e., 5 nm) to the
bottom, then the drag of the core across the surface rough-
ness could contribute to the dynamics. The optical resolution
in the z direction (which would appear as defocusing) is of
the order of one micron, and therefore not precise enough to
establish if this condition is held. In Fig. 5, the contrast on
the disclination is different from that near the pinning points,
and one possible origin of this could be that the disclination
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FIG. 6. (Color online) Simple relaxation of disclination. (a)
Brightfield images of disclination at different times after relaxation.
This disclination has /p=107 um. The laser spot is clearly seen
below the tip of the disclination in the top image. (b) Time evolu-
tion of the distance h(r) between the tip of the disclination and its
equilibrium position. The line is an exponential fit of the data, with
decay constant 7=10.0*0.2 s.

tilts upwards, away from the bottom surface by a fraction of
a micrometer. Assuming that the disclination and the bound-
ary are farther than the core size, and knowing the theoretical
tension and friction of the disclination, the characteristic de-
cay time 7 of Eq. (5) can be predicted. For the shorter dis-
clination in Fig. 5, this is 7= ISR/8T=7 s, and for the discli-
nation in Fig. 6 7=19 s. Measured values of characteristic
decay times are somewhat shorter than predictions by our
simple models. This discrepancy confirms a finding previ-
ously reported in [18]. In that work the equilibrium fluctua-
tion modes of defect lines were analyzed, and it was possible
to obtain the tension and effective viscosity. While the ten-
sion was found to compare well with theory, the viscous
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coefficient found in experiment was less than half what is
expected from simple theory, which is what we report in the
current work. The origin of this discrepancy lies in the ne-
glecting the coupling of flow and reorientation of the nematic
order (backflow), in obtaining Eq. (2). This makes Eq. (2)
only applicable in the limit of extremely slow movements of
the disclination line. The experiments in this work (and [18])
indicate that this leads to a significant discrepancy in the
time scale of relaxation. Modeling backflow requires numeri-
cal solution of the equations of nematohydrodynamics, and is
beyond the scope of this paper. A calculation for the case of
the motion of defects of strength =1/2 was done in [19] and
showed that the inclusion of backflow led to a doubling of
the relaxation speed.

V. CONCLUSIONS

In this paper, we have considered experimentally and
theoretically the relaxation of stretched disclination lines in
nematic liquid crystals. Using optical manipulation and
brightfield microscopy we have induced disclinations and
observed two different modes of relaxation depending on the
amplitude of deformation. The relaxations decayed either lin-
early or exponentially in time, a behavior that we explained
qualitatively from simple theory considerations. The theory
arguments used here neglect backflow and make simplifying
assumptions on the elasticity of the nematic phase (one con-
stant approximation). Experimentally the disclination
strength and the distance between the disclination lines and
the solid boundaries are not controlled. Despite these limita-
tions, there is reasonable quantitative agreement between the
simple predictions and experiments, with the observed relax-
ation times being shorter than expected.
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