Optothermally driven colloidal transport in confined nematic liquid crystal

M. Škarabot, a N. Osterman b, a and I. Muševič a, b

We demonstrate transport of microparticles by rapid movement of laser spot in a thin layer of a nematic liquid crystal. The transport is achieved by fluid flow, caused by two different mechanisms. The thermoviscous expansion effect induces colloidal transport in the direction opposite to the laser movement, whereas thermally induced local melting of the liquid crystal pulls the particles in the direction of the laser movement. We demonstrate control of colloidal transport by changing the speed of the laser trap movement and the laser power. We anticipate that complex optofluidic colloidal transport could be realized in the nematic liquid crystal using channel-free optofluidic approach.

Experimental setup

In the experiments we have used homeotropically oriented LC cells made of one optically transparent indium tin oxide (ITO) coated glass and one normal glass. The ITO coating on one substrate was used as an absorber of the laser light and it was set to 4-6 μm. Homeotropic orientation of LC was achieved by covering glass and ITO surfaces with DMOAP silane (ABCR GmbH), which ensures a very strong perpendicular orientation of LC molecules at the surface. LC cells were filled with nematic liquid crystal E12 (Merck) using

This journal is © The Royal Society of Chemistry 20xx

Journal Name, 20xx, 00, 1-3 | 1

J. Štefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia.

Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x
capillary effect. Very small amount of silica microspheres with diameter 0.97 µm or 2.32 µm (Bangs Laboratories) were dispersed in the LC in order to follow its hydrodynamic flow. Microspheres were treated with the same DMOAP silane which induce strong homeotropic anchoring at the surface of particles.

Hydrodynamic flow of the LC was induced by moving a focused IR laser beam, which was achieved by a pair of acousto-optic deflectors controlled by a computerized laser tweezers system (Aresis, Tweez 70) built around an inverted optical microscope (Nikon Eclipse, TE2000-U) and IR fiber laser. The microparticles were video recorded using the Pixellink PL-A741 camera at a frame rate of 40 frames per second. In an off-line analysis, the time dependence of microparticle positions was determined by a video-tracking procedure with a typical resolution of 2.15 nm and consequently the velocity of microparticles was determined by numerical derivation of the trajectory as a function of time. The orientation of LC molecules was observed between crossed polarizers with inserted full wave plate between the analyzer and the sample, while color images were taken with the Canon EOS 500 camera.

Results and discussion

In the experiment the laser spot was moving along a circular trajectory with a radius of 10 µm (Fig. 1a). The NLC is heated due to the absorption of the laser light at the ITO surface, but since the applied laser power is rather small ($P \sim 45$ mW), NLC is not heated to the isotropic phase. We observe in the experiment that small colloidal particles are circulating in the opposite direction with respect to the circulation of the laser trap, as illustrated in Figure 1a. This effect is well known for isotropic fluids, such as water18 and is due to the thermoviscous expansion and consequent contraction of the fluid under the local heat dissipation of the moving warm spot of the laser tweezers. The velocity of the particle is always opposite to the trap movement and equals to the flow velocity v, which is determined by the following expression18

$$v = -\frac{3\sqrt{\pi}}{4} f \alpha \beta h \Delta T^2.$$

Here f is the circulation frequency of the laser spot, α is the coefficient of thermal expansion, β describes temperature dependence of viscosity $\beta = (1/\eta)(\partial \eta / \partial T)$, h is the width of the warm spot and ΔT is the increase of the temperature in the centre of the spot. We have checked the validity of equation (1) in E12 nematic LC and the flow velocity is indeed proportional to the laser rotation frequency (Fig. 1b), as predicted. It should be noted that the velocity of the induced flow is several orders of magnitude lower than the velocity of the laser spot. The flow has the direction opposite to the laser spot movement, as described by a minus sign in Eq. 1. To estimate ΔT, we have used $\alpha = 15 \times 10^{-4} K^{-1}$, $\beta = 0.065 \times 10^{-4} K^{-1}$, $h = 10 \mu m$ and we got $\Delta T \approx 3K$. We have checked the estimated increase of temperature ΔT in a separate experiment by observing the fluorescence of dispersed dye, which has the emission spectra dependent on temperature.22 We have used the 5CB doped with the dispersed dye in the same cell during illumination of the sample and we got slightly larger $\Delta T \approx 4K$. It is interesting that no LC reorientation due to the nematic flow can be observed in this case (Fig. 1c). This is a consequence of thin LC cell with strong homeotropic anchoring and relatively slow flow velocity of the order of 1 µm/s. It has been shown in microfluidic experiment that in this geometry the LC reorientation occurs at the velocity above 10 µm/s.23

In the next experiment we increased the laser power and the liquid crystal was locally heated to the isotropic phase, therefore forming a small isotropic island. This molten and isotropic island can be observed under optical microscope as a small bright spot around the position of the laser spot in Figure 2a. It is well known that such isotropic droplet strongly attracts colloidal particles for two reasons: (i) by elastic forces due to the decreased order parameter at the heated region and (ii) by the nematic-isotropic (NI) interface.14,15 Both mechanisms always attract particles towards the isotropic island and therefore move together with a moving laser spot. We have observed by analysing captured video frames that the particle is not moving continuously with the laser spot, but it is pulled by the moving laser tweezers for a certain distance in each cycle of circulation.

Figure 1: Circulation of the laser spot induces hydrodynamic flow in E12 nematic LC. (a) When small laser power is used ($P = 45$ mW), the 2.3 µm colloidal particle is circulating along the direction of the nematic flow (black arrow), which is opposite to the circulation of the laser spot (red arrow). (b) The particle velocity is proportional to the laser circulation frequency. (c) No LC reorientation can be observed between crossed polarizers due to the liquid crystal flow at low laser power.
Figure 2: The laser spot at a stronger power ($P \approx 60$ mW) locally heats the LC to the isotropic phase. (a) At a small laser circulation frequency ($f < 30$ Hz) the 2.3 µm colloidal particle is pulled by the isotropic droplet in the direction of the laser movement. (b) At a higher rotation frequency ($f > 60$ Hz) the particle is moving in the opposite direction due to the thermoviscous effect. (c) The velocity of a particle as a function of the laser circulation frequency. (d) The movement of the isotropic droplet.

The nematic flow, induced by the thermoviscous effect in the direction opposite to the laser spot movement is still present, but at low frequency of the laser spot rotation the pulling effect in average overcomes the flow effect and the particle is moving in the direction of the laser spot (Fig. 2a). Actually the particle is moving oscillatory since it is pulled by isotropic island for a small distance in the direction of the laser movement, but then it is moved back in the direction of the nematic flow. These oscillations are observed only at small laser spot frequencies ($f < 10$ hz) and in the graphs only average velocity of the particle is presented. When the rotation frequency is increased, the thermoviscous flow effect is increased and the particle is moving in the direction opposite to the laser movement (Fig. 2b). As a result of two competing mechanisms of colloidal transport, we can control the direction and the speed of the particle movement simply by changing the laser circulation frequency (Fig. 2c). The movement of the small isotropic droplet with high speed induces transient NLC reorientation, which can be observed under polarizing microscope (Fig. 2d) and it will be discussed in details later in this work.

In the next set of experiments we kept the laser circulation frequency fixed ($f = 1$ kHz) and the laser power was increased in discrete steps. Here we have observed three different regimes of the particle movement depending on the laser power P:

- $P < 50$ mW: There is only thermoviscous effect present and the particle is moving opposite to the direction of the laser spot (Fig. 3a).
- 50 mW $< P < 90$ mW: LC is locally heated to the isotropic phase and the isotropic droplet is pulling the particle in its direction (Fig. 3b).
- $P > 90$ mW: LC is heated in the isotropic phase continuously in the whole region of the laser spot rotation. There is no isotropic droplet and therefore no pulling effect. The thermoviscous effect is only present and the particle is moving opposite to the direction of the laser spot like in a normal isotropic fluid (Fig. 3c).

By changing the laser power at a fixed laser circulation frequency, the colloidal movement can be fully controlled (Fig. 3d). While the nematic flow is always opposite to the direction of the laser spot, the particle can move in the direction of nematic flow or exactly opposite to it due to the pulling effect of thermally induced isotropic droplet. It should be noted that all observed effects strongly depend on the heating of the NLC. Here we have used homeotropic LC cells with one ITO coated substrate, which strongly absorbs laser light and consequently LC is heated. If both substrates were normal microscopic glass substrates without ITO, the heating is less effective and same effects were observed at almost one magnitude higher laser power. When sapphire glass substrates were used, which absorb much less IR light than glass substrates, no heating of LC was observed also at very high laser power ($P = 800$ mW) and consequently there was no induced nematic flow. The
strength of pulling effect by isotropic droplet depends on the size of the LC distortion induced by the particle and on the gradient of the order parameter around the hot spot. In our case this distortion is relatively big since we are using particles with strong surface anchoring. The maximal velocity of 1 μm particles caused by the pulling effect is around 25 μm/s, what means that the maximal trapping force of isotropic droplet is approx. 10 pN. In the case of particles with weak anchoring the trapping of particles by isotropic droplet is weaker and the pulling effect is less pronounced.

Figure 4: (a) Reorientation of LC molecules induced by the molten and isotropic droplet of E12, observed with the polarizing microscope with a λ-plate. P and A show the orientation of polarizer and analyser and is the direction of the optical axis of the λ-plate. The laser spot is not moving and is switched on and off with the frequency of 5 kHz and the power of 170 mW. As a result, the isotropic droplet is induced on the ITO coated glass substrate and LC molecules are oriented planar at the NI interface (b). (c-h) The laser spot is continuously moved in different directions (f = 1 kHz, P = 55 mW). In this way an isotropic line on the ITO coated substrate is formed and orientation of molecules and corresponding colours are dictated by the tail part of the droplet. (i, j) Laser spot is rotating in a circle (f = 1 kHz, P = 60 mW) and isotropic torus is created on the ITO coated substrate. As a result, tilted molecules are observed at the interface of the isotropic torus and the nematic E12, which are also schematically presented for both senses of circulation.

Finally, we were interested in the reorientation of the LC director, which is induced by the laser spot movement and by the LC flow. It is interesting that at low laser power no reorientation can be observed, nevertheless the flow of the nematic LC is present (Fig. 1c). When the laser power is increased, the LC is locally heated to the isotropic phase and LC reorientation becomes visible (Fig. 2d), which can be studied in details using polarizing microscope with an additional full wave plate λ = 530 nm (Fig. 4). By using this plate we can distinguish between two orientations of LC, deflected for the same angle in two different directions. With this plate these two directions appear bluish or yellowish, while without this plate they both appear white, as one can see by comparing figures 2c and 4j, which are presenting the same experiment. Because in the experiment the laser spot is switched between neighboring positions at high frequency, we first checked the effect of fast on-off switching of the laser at a fixed position. This is shown in Figure 4a, where the laser spot is stationary and is switched on and off with the frequency of 5 kHz. The isotropic droplet is formed from the hot ITO surface, but does not extend throughout the whole thickness of the cell. If this was the case, then the circle in Figure 4a would be of uniform red colour without yellow and blue sections. Because there is a planar orientation of E12 on its isotropic, the cross-section of the isotropic E12 droplet surrounded by the nematic E12 is illustrated in the schematics in Fig. 4b. We are actually looking at the isotropic droplet from the top and we see reorientation from the bulk homeotropic orientation to the planar tilted orientation at the NI interface.

When such droplet is moved with a high speed through LC, it leaves behind a temporary reoriented nematic, giving characteristic yellow and blue sections under polarizing microscope with the λ-plate. Figure 4c shows an example when the laser spot is scanned from the left to the right with the repetition frequency of 1 kHz. LC molecules are reoriented in the direction dictated by the tail part of the droplet and one can see yellow color at the top and blue color at the bottom part of the line. When the direction of the line is reversed, the tilt of molecules and the colours are also reversed (Fig. 4d). In the next case the laser spot is moved under 45 degrees in the direction SE (South-East) and it leaves reorientation which gives yellow color according to Fig. 4a (Fig. 4e). When the direction is changed to NE, the color is changed to blue (Fig. 4f). In the last case the spot is moving in the vertical direction and the colours of lines can be easily predicted according to the direction of the movement (Fig. 4g, h). Finally, the laser spot was continuously circulating in a circle in the clockwise and counter-clockwise direction (Fig. 4i, j). The reorientation of LC molecules (and consequently the observed colours) always follows the orientation at the tail part of the thermally induced isotropic droplet. It should be emphasized here that thermally induced nematic flow does not induce reorientation of LC molecules as can be seen in...
Figures 1c and 3a. The reorientation is induced only by the isotropic droplet when higher laser power is used.

Conclusion

This work demonstrates two different mechanisms of colloidal transport induced by the fast movement of the warm spot of the laser tweezers. The transport of particles is achieved by two thermal effects, which induce colloidal transport in two opposite directions. Thermoviscous expansion effect induces fluid flow and colloidal transport in the opposite direction of laser movement, while pulling by a thermally induced isotropic droplet of a nematic induces colloidal transport in the direction of laser movement. In the present work the local heating of LC is achieved by the absorption of the laser light at the substrate surfaces in a thin nematic cells, so the flow and the transport are restricted to 2D. To expand the method to 3D with complex flow configuration, other methods should be used as well, like LC dispersions of nanoparticles, which can absorb the light and locally heat the LC. We also anticipate that complex microfluidic circuits with channel-free colloidal transport could be achieved in nematic LCs by contactless optical control.

Acknowledgements

Authors acknowledge financial support of Slovenian Research Agency (ARRS) through contracts P1-0099, J1-6723 and J1-6724.

References