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Magnetically driven omnidirectional artificial micro-
swimmers†

Mojca Vilfan,∗a Natan Osterman,a,b and Andrej Vilfana

We present an experimental realisation of two new artificial microswimmers that swim at low
Reynolds number. The swimmers are externally driven with a periodically modulated magnetic
field that induces an alternating attractive/repulsive interaction between the swimmer parts. The
field sequence also modulates the drag on the swimmer components, making the working cycle
non-reciprocal. The resulting net translational displacement leads to velocities of up to 2 micro-
meters per second. The swimmers can be made omnidirectional, meaning that the same mag-
netic field sequence can drive swimmers in any direction in the sample plane. Although the direc-
tion of their swimming is determined by the momentary orientation of the swimmer, their motion
can be guided by solid boundaries. We demonstrate their omnidirectionality by letting them travel
through a circular microfluidic channel. We use simple scaling arguments as well as more detailed
numerical simulations to explain the measured velocity as a function of the actuation frequency.

Introduction
Transport of biological and artificial nano- to micro-scale objects
presents a fascinating problem that has gained a lot of attention
in the recent years. Its main feature lies in the low Reynolds num-
ber (LRN), a hydrodynamic regime in which the inertia is negli-
gible, the motion is dominated by the viscous forces, and since
the fluid flows are time reversible, swimming under such condi-
tions requires non-reciprocal motion1. Many manifestations can
be found in nature, as the motion of micron-sized organisms falls
under the LRN regime. Rotating flagella of bacteria, travelling
waves on spermatozoa flagellum, and beating cilia of many motile
eukaryotic organisms are just a few examples2.

Several theoretical studies proposed simple concepts how to
produce non-reciprocal motion and directed swimming with ar-
rangements of a small number of particles. The swimmer by Na-
jafi and Golestanian3 is composed of three linked spheres and
swims by periodically yet non-reciprocally changing the lengths
of the links. This model has later been extended to a circular
swimmer4 and to larger particle assemblies5,6. Another simple
model, the so-called pushmepullyou by Avron and co-workers7, is
made up of two spherical bladders that periodically change their
separation and volumes to produce locomotion. If an external
torque (e.g. magnetic) is applied to the swimmer, non-reciprocal
motion can even be achieved with two particles of constant vol-
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ume8–10. While the hydrodynamic interactions11 that give rise
to swimming are well understood, the experimental realization
of such swimmers is not straightforward.

Most experimentally realized many-body swimmers used an ex-
ternally applied periodic magnetic field sequence to modulate the
interactions between particles and to induce torques on the as-
semblies. The field can be either oscillating, rotating, or, simply,
contain a gradient12. Dreyfus et al.13 were the first to create arti-
ficial flagella by assembling an elongated structure and driving it
with an oscillating magnetic field. Elastic deformations make the
motion non-reciprocal and enable directed propulsion14. A sim-
ilar effect can be achieved with a buckling filament15. Tierno et
al.16 designed a magnetically-actuated swimmer whose propul-
sion was assisted by a boundary rather than by body deforma-
tions. Two more swimming mechanisms based on the interactions
with the boundary were demonstrated by Morimoto et al., who
observed tumbling motion on a magnetic substrate17, and by Sing
et al., who created artificial walkers as long chains of superparam-
agnetic particles18. Colloidal wheels rolling along a surface were
shown to exhibit very interesting non-reciprocal dynamics19. Fur-
ther experiments include propulsion of rotating microscopic he-
lices20–23 and spiral motion of a particle-based microswimmer24.
Helical microswimmers, in particular, were studied as candidates
for microrobots in biomedical applications such as targeted drug
delivery, micro-surgery, sensing or detoxification12,25,26. A com-
mon limitation of all these designs is that the direction of swim-
ming is uniquely determined by the magnetic field sequence. It is
therefore not possible to have different swimmers simultaneously
moving in different directions.

Journal Name, [year], [vol.], 1–8 | 1



Alternative propulsion mechanisms for swimmers, such as
chemical catalysis27,28, electric field (Quincke effect)29, light30

and ultrasound31 do not come with this limitation. In these cases
the swimming direction is determined by the orientation of the
particles or by small initial perturbations. Magnetic rollers can
also be driven with an oscillating vertical field alone, but only
if they are large enough that inertial effects play a role32. Such
swimmers were therefore widely used to study collective phenom-
ena, such as flocking29,32.

In this paper, we present an experimental realisation of two
magnetically driven omnidirectional swimmers in water. The
first swimmer type, we name it the thrower, is composed of a
large and a small sphere, with the smaller one being repeatedly
“thrown” away from the large one. The second type, called the
rower, comprises a small sphere and a dumbbell made of two
spheres. The orientation of the dumbbell during the cycle loosely
follows the orientation of an oar, hence the name. Both swimmer
types are actuated externally with a magnetic field that periodi-
cally alternates between an attractive and a repulsive interaction.
The thrower breaks the time reversal symmetry because the small
sphere follows different trajectories during the repulsive and at-
tractive phases. The rower achieves a similar effect by different
orientations of the dumbbell. The described swimmers are om-
nidirectional – meaning that the direction of their movement in
the plane is determined by the orientation of the swimmer and
not by the direction of the external magnetic field as in most
magnetically-actuated swimmers. Guided by microchannels, they
can autonomously travel through complex microfluidic networks.
They can travel individually or collectively, making them suit-
able for studying collective dynamics where all the swimmers are
driven by the same external force, yet move through complex for-
mations of channels with no pre-programmed magnetic sequence.

Swimming mechanisms
To achieve alternating attractive and repulsive magnetic forces
between the swimmer components, superparamagnetic beads
were used in the experiment. Here the term superparamagnetic
is used in the sense that without the magnetic field, the magneti-
sation in the spheres – and with it magnetic interaction between
the spheres – is zero. When magnetic field is switched on, mag-
netisation, which is proportional to the external magnetic field
and parallel to its direction, is induced. The beads then interact
via magnetic dipole-dipole interaction. Depending on the orien-
tation of the dipoles, the force between the beads can be either
attractive or repulsive.

Repulsive force between the swimmer components was ob-
tained when the external magnetic field was oriented in the ver-
tical direction (perpendicular to the observed motion), whereas
the attractive force was achieved with the magnetic field in the
sample plane. This attractive force, however, only acts in the di-
rection of the external magnetic field. To obtain a uniform and
isotropic attractive interaction between the beads, magnetic field
can be rotated in the sample plane, so that the inter-particle force
rapidly changes from attractive to repulsive and back. Since the
two forces differ in amplitude, the average in-plane dipole-dipole
force is attractive. This method thus enables generation of both

isotropic repulsive and isotropic attractive force between particles
in the sample plane.

We first describe the swimming mechanism of the thrower,
which comprises two beads of different size, both heavier than
water. The swimming cycle starts with the beads in contact (Fig-
ure 1a). When a strong repulsive force between the beads is ap-
plied (Figure 1b), the beads are pushed apart whereby the smaller
bead largely follows a horizontal path. Afterwards, the force is
turned off and the small bead is left to sediment (Figure 1c). Af-
ter the pause, attractive force is applied (Figure 1d) and the beads
are drawn together. However, the smaller bead now follows a dif-
ferent path, closer to the bottom plate (Figure 1e). Finally, the
smaller bead returns to the initial position, but the whole swim-
mer has moved (Figure 1f).

Fig. 1 Simplified motion mechanism for the thrower (left) and rower
(right). Blue arrows denote the direction of the external magnetic field,
red arrows indicate the directions in which the swimmer components are
moving, and the continuous red line on the left presents the path of the
smaller sphere during one cycle.

The propulsion mechanism can be understood as follows. Let
x1 denote the horizontal position of the large bead (radius a1)
and x2 > x1 that of the small one (radius a2). We write down the
equations of motion for the horizontal positions of both beads,

ẋ1 =−Fµ11 +Fµ12 (1)

ẋ2 =−Fµ21 +Fµ22 (2)

where the force F has a positive sign when it is repulsive and
negative when it is attractive. The parameters µ11 and µ22 are
the mobilities of the large and the small particle, respectively,
and µ12 = µ21 is the term describing hydrodynamic interactions
between them. It should be noted that the mobility of the smaller
particle µ22 depends on its elevation z2 and that the interaction
term µ12 depends on both the elevation and the separation be-
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tween the beads. Both µ22 and µ12 therefore vary during the
cycle. We neglected the off-diagonal mobility terms that describe
the horizontal motion of a particle due to the vertical force acting
on the other one or vice versa. We now introduce the parameter
Y = x2− x1, which describes the distance between the centres of
the spheres. From Eqs. 1 and 2 it follows

Ẏ = F(µ22 +µ11−2µ12) . (3)

Through a cycle, the distance changes from its minimum value
Y0 = a1 + a2 to a maximum Y1 and back. The total shift of the
position of the large sphere in one cycle can therefore be written
as

∆x1 =−
∮

µ11−µ12(z2,Y )
µ22(z2)+µ11−2µ12(z2,Y )

dY. (4)

During the repulsive part of the cycle, when dY > 0, the smaller
sphere is further away from the surface and z2 is larger than dur-
ing the attractive phase (when dY < 0). Consequently, µ22(z2) is
larger during this part of the cycle. Taking into account that the
coupling mobility µ12 is much smaller than the diagonal mobil-
ities, it follows that the net displacement in a complete cycle is
positive and ∆x1 > 0.

The frequency dependence of the swimming velocity follows
from the following considerations. For two spheres whose centres
are at the same height (which is roughly the case in the repulsive
phase), the magnetic dipole-dipole interaction force scales with
∼ Y−4. Neglecting hydrodynamic interactions in Eq. 3, this leads
to a solution Y 5−Y 5

0 ∼ t. The maximum separation during the
cycle is reached at the end of the repulsive phase, whose dura-
tion is inversely proportional to the frequency f , and therefore
has a frequency dependence of Y1 ∼ f−1/5. At lower frequencies,
the small particle approximately keeps the initial vertical position
during the short repulsive phase, but sediments to the bottom
during the phase without a field. During the attractive phase,
it remains close to the bottom the longest part of the approach.
We can therefore use z2 ≈ a1 for the repulsive and z2 ≈ a2 during
the attractive phase. The integral in Eq. 4 is then proportional to
∆Y . Finally, we can calculate the swimming speed v, which is the
displacement per cycle, multiplied by the frequency f

v = ∆x1 f (5)

and scales as v∼ f 4/5.
At higher frequencies the phase without the magnetic field is

too short for the small particle to sink to the bottom. The vertical
displacement during the field-free phase is then proportional to its
duration δ z2 ∼ f−1. For small differences in height, the integral
in Eq. 4 is proportional to the area enclosed by the small particle’s
trajectory. Its width scales as ∆Y ∼ f−1/5 and its height as ∼ f−1.
The integral in Eq. 4 then scales as ∼ f−6/5 and the velocity with
∼ f−1/5.

The cross-over frequency between the two regimes can be es-
timated from the sedimentation time of the small particle from a
starting point determined by the radius of the larger one, z2 = a1.
The vertical drag coefficient at this height is about 3× the un-
bounded Stokes drag, giving a sedimentation velocity of 1 µm/s.
This gives a sedimentation time of approx. 1s (an exact calcula-

tion gives 1.4s). With 38% of the cycle in the off state, we finally
obtain a cross-over frequency of ∼ 0.4Hz.

The swimming mechanism of the second swimmer, the rower,
works as follows. The rower is composed of three beads with
radius a2, two of which form a dumbbell. The cycle starts with
the dumbbell aligned horizontally at x1 = 0 and the single sphere
at x2 = 3a2 (Figure 1g). When an external magnetic field point-
ing in the vertical direction is applied (Figure 1h), the dumbbell
quickly reorients and the repulsive force pushes the single bead
away from the dumbbell. Since the drag on the dumbbell is larger
than on a single sphere, the single sphere moves further than the
couple (Figure 1i). The magnetic field is then switched to hori-
zontal direction, the dumbbell quickly rotates (Figure 1j) and the
attractive force draws the spheres together (Figure 1k). However,
the drag on the rotated dumbbell is now reduced and the swim-
mer’s centre of mass moves to the right (Figure 1l).

Experimental
The throwers were created by using pairs of superparamagnetic
beads with diameters 2a1 = 4.5 µm and 2a2 = 2.7 µm (Dynabeads
Epoxy M-450 and M-270, both Dynal Biotech33). The micro-
spheres were mixed in ultra-pure water (Millipore, 18.2MΩcm)
with added surfactant SDS (sodium dodecyl sulphate, 5mg/ml)
to prevent sticking and aggregation of the beads. A droplet of
the mixture was placed on a microscope slide and covered with a
cover slide, pressed and sealed to prevent evaporation and fluid
currents in the cell. As the distance from the surface plays an
important role in this experiment, wedge cells were prepared,
enabling us to choose the appropriate sample thickness, varying
from a few microns to several tens of microns.

The rowers comprised three spheres with a diameter of 2a2 =

2.7 µm, two of which were non-specifically bound forming a
dumbbell. The samples were prepared similarly as for throw-
ers with two different sample thicknesses d: one larger than the
dumbbell size d > 4a2, and one slightly smaller than twice the
bead diameter d < 4a2.

To facilitate the velocity measurements, we first applied an at-
tractive potential that kept the swimmers aligned with the x-axis,
thus making them bi-directional instead of omnidirectional. The
magnetic field density used in the experiments was 10.5mT for
repulsive and 1.77mT for attractive force. One complete swim-
ming cycle was achieved by using the following magnetic field
sequences. For the thrower 1 % in +z direction, 19 % no mag-
netic field, 30 % in the plane (+x) direction, followed by 1 % in
−z direction, 19 % no magnetic field, and 30 % magnetic field in
+x direction. Magnetic field sequence for the rower was 45 %
attractive (+x), 5 % repulsive (+z), 45 % attractive (+x), and
5 % repulsive (−z). The asymmetric cycle was employed to make
the field sequence spatially symmetric and prevent biased rota-
tion and rolling of the beads. For omnidirectional swimmers, the
horizontal field was rotated around the z axis with a frequency of
400Hz in alternating directions. To exclude any possible effects of
field gradients and flow of the surrounding fluid, we acquired the
velocities of several swimmers moving simultaneously in opposite
directions. The experiments were also made with swimmers mov-
ing in the +y and −y directions, but no significant difference was
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observed.
We used the experimental set-up described previously34,35: an

optical microscope (Zeiss Axiovert 200M inverted microscope,
Achroplan 63/0.9W objective) additionally equipped with three
orthogonal pairs of coils. Electrical currents through the coils
were regulated individually creating an almost homogeneous
magnetic field of varying magnitude in arbitrary direction. The
motion of the particles was recorded in the bright field with a
CMOS camera (Pixelink, PL-A741) and analysed with a particle
tracking software (PartTrack, Aresis).

Results and discussion
Throwers

A representative example of observed thrower traces is shown
in Figure 2, together with the traces of single beads undergo-
ing Brownian motion. For clarity, initial positions of all the
swimmers and beads were set to zero. We oriented the swim-

Fig. 2 Traces of four throwers (green, violet, red and cyan) and traces
of four individual beads (orange, bright green, blue and magenta) taken
from the same measurement at a modulation frequency of f = 4 Hz.

mers such that two of them were swimming in the +x direction
and two in the −x direction, and the contrast between their di-
rected motility and the Brownian motion of isolated single parti-
cles is clearly visible. The average diffusion constant of the non-
swimming beads with the radius of a2 = 1.4 µm was found to be
D1 = (7.2±1.0)×10−14m2/s, which is notably lower than the ex-
pected diffusion coefficient of the same particles in bulk water
D0 = kBT/(6πa2η) = 16× 10−14m2/s. The difference can be ex-
plained with the particle’s proximity to the no-slip boundary on
the surface. Considering Boltzmann’s distribution of particles in
the gravitational field, one would expect an average distance of
90nm. The observed reduction in diffusion constant (equivalent
to a reduction in mobility) is obtained if the distance between the
particle and the surface is 0.1a2 = 140nm36.

Taking a closer look at the traces, we can separately plot posi-
tions of the larger and the smaller bead. In Figures 3a and 3b ob-
served bead positions x1 +a1 (black) and x2−a2 (red) are shown
for an attraction-repulsion cycle frequency of 0.3 Hz and 8 Hz,
respectively. Their motion averaged to one cycle is presented in

Figures 3c and 3d. One clearly observes the different stages of
the cycle: the rapid repulsion, when the beads are pushed apart,
the off-time, when the smaller bead sediments, and the gradual
decrease in the separation when attractive force acts between the
beads. Due to a lower amount of data in the slow motion, the
averaged curve is not as smooth, but the increase in the maximal
separation value Y1 is still apparent. The same motion was also
numerically simulated and the obtained averaged curves, which
are shown in Figures 3e and 3f, are in a very good agreement
with the observed ones. The additional information that one can
acquire from the numerical simulations are the elevations of the
individual beads, which are the crucial parameter in the efficiency
of motion. The elevations are shown in Figures 3g and 3h for
lower and higher frequency, respectively. The black lines show
the elevation of the larger bead, which clearly does not change
during the cycle. The motion of the smaller bead (red line) will
be discussed later.

Fig. 3 Positions of the beads at low frequency (left column) and at high
frequency (right column): (a) and (b) measured positions of the beads
x1 +a1 (black) and x2−a2 (red) as a function of time with corresponding
averaged traces shown in (c) and (d). Averaged bead positions (e) and
(f) and their elevations (g) and (h) from numerical simulations. Red lines
always denote the position or elevation of the smaller bead and black of
the larger one.

The traces of motion can be used to obtain the swimming veloc-
ities as a function of attraction-repulsion cycle frequency f , which
are shown in Figure 4 as red dots. The frequency dependence of
velocity - initial increase and subsequent decrease - is in qualita-
tive agreement with the predictions of the simple model (Eqs. 1-
5). A more exact numerical simulation of the system, without
free parameters, is described in the Appendix and shown by the
dashed line in Figure 4. Interestingly, there is a big discrepancy
at frequencies below ∼ 2Hz. Most visibly, the experimentally ob-
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Fig. 4 Swimming velocity of the thrower as a function of the cycle fre-
quency. Red circles: experimentally measured velocities. Dashed line:
simulation of the basic model. Solid line: simulation taking into account
bead rotation during the switch from attractive to repulsive interaction.

served maximal velocity is reached at frequencies around 5Hz,
rather than 0.4Hz as predicted.

As seen in some of the recorded videos†, the small bead fol-
lows different trajectories during even and odd cycles, which dif-
fer by the direction of the vertical magnetic field. This observation
can be explained by the anisotropy and finite magnetic relaxation
rate, which had been reported in Dynabeads before37. When the
field alternately switches from horizontal to vertical up or down,
this causes a quick rotation of the large bead. Because of hydrody-
namic interactions or adhesion between the beads, the small bead
follows the rotation for a short time, meaning that it is slightly
shifted upwards or downwards at the onset of the repulsive phase,
as shown in Figure 5. As a consequence, the area enclosed by the
trajectory of the small bead is reduced at low frequencies, which
lowers the swimming velocity. At the same time, the rotation in-
troduces a non-reciprocity into the trajectory that is independent
of gravity. The swimming velocities are therefore increased at
high frequencies. The angle of rotation can be estimated if we as-
sume that the small bead remains close to the surface of the large
one while the latter turns by an angle of π/2. Because the angu-
lar velocity of the fluid around a rotating sphere shows a ∼ r−3

dependence38, we expect a rotation of the small bead around the
large one by an angle α ≈ (a1/(a1 +a2))

3π/2 = 0.38rad. In reality
the distance between the beads starts growing before the turn is
completed. We thus treat the effect phenomenologically by using
a somewhat smaller angle α± = ±0.16rad ≈ ±9◦, which leads to
a good agreement with the measurements. The simulated swim-
ming velocity is shown by the solid line in Fig. 4.

The additional asymmetry that is introduced with the slight ro-
tation is best visible in the elevation plot, shown in Figures 3g and
3h. The constant black line is the elevation of the larger sphere,
which does not change during the cycle, and the red line denotes
the elevation of the smaller sphere. At higher frequencies (Fig-
ure 3h), the effect of the rotation on the swimming velocity is
rather small as the sphere always remains at a notable elevation

above the surface. This is different in the case of low frequencies
(Figure 3g), where the motion becomes highly asymmetric, since
the vicinity of the surface and anisotropic magnetic interaction ef-
fectively reduce the step length and with it the average swimming
velocity.

Fig. 5 Schematic representation of the additional asymmetry introduced
into the system by slight rotation of the large bead

So far, the throwers were swimming in either +x or −x di-
rection simultaneously. If instead of horizontal magnetic field
a rotating in-plane magnetic field is applied, the swimmers start
swimming in arbitrary directions in a non-predetermined manner.
However, the swimming velocity is reduced to below 100 nm/s.

Omnidirectional Rower

The second swimmer, the rower, does not require the proximity
of the surface to move. The broken time reversal symmetry is
achieved by rotating the dumbbell and thus changing the drag on
one swimmer component during the cycle (Figures 1 g-l). The
swimming efficiency and velocity, however, are significantly in-
creased if the swimmer is placed between two flat surfaces. In
thin samples, in which the separation between the surfaces is
slightly smaller than the size of the dumbbell (d < 4a2), the dumb-
bell wedges between the glass plates, which strongly increases its
drag during the repulsive phase.

The observed swimming velocity of the bidirectional wedged
rower as a function of the cycle frequency is shown in Figure 6.
In contrast to the thrower, the velocity reaches a plateau of about
2 µm/s for frequencies above 2 Hz. This can be understood as
follows. During the repulsive phase, the dumbbell is immotile
and the single particle moves as a consequence of the dipole-
dipole interaction. Like for the thrower, the force on the parti-
cle falls with the distance Y between its centre and that of the
dumbbell as F ∼ Y−4. The distance then increases with time
as Y 5 −Y 5

0 ∼ t where Y0 is the distance at the onset of the re-
pulsive phase. The particle reaches a distance Y1 at the end of
the repulsive phase, Y 5

1 −Y 5
0 = C/ f , where the constant C de-

pends on the strength and fraction of the repulsive interaction,
as well as on hydrodynamic drag. The distance by which the par-
ticle moves is then ∆Y = (C/ f +Y 5

0 )
1/5−Y0. During the attractive

phase, the dumbbell leaves the wedged position and moves to-
wards the particle. Each of them covers a distance proportional
to its mobility (∆x1/µ11 =−∆x2/µ22), where µ11 is the mobility of
the dumbbell and µ22 ≈ 2µ11 that the particle, while the total dis-
tance equals ∆x1−∆x2 = ∆Y . Therefore, the dumbbell moves by
∆x1 = µ11/(µ11 + µ22)∆Y . Note that the expression holds for the
wedged rower – in the case of the free rower the backward move-
ment during the repulsive phase needs to be subtracted. Finally,
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its average velocity is

v = f ∆x1 = f
µ11

µ11 +µ22

((
C
f
+Y 5

0

)1/5
−Y0

)
. (6)

A good fit of the experimental data (Figure 6) is obtained with
the values C = 4.7× 105 µm5s−1 and Y0 = 10 µm. The fitted Y0 is
larger than the distance between the particle and the dumbbell at
the onset of the repulsive phase (1.5a2 ≈ 4 µm). One reason for
the discrepancy is the fact that a wedged dumbbell initially exerts
a smaller (∼ 1/2) force on the particle than a point dipole would.
Adhesion between particles can also contribute to the deviation.

Fig. 6 Measured swimming velocity of the wedged rower as a function
of the cycle frequency

The bidirectional rower moves in a direction prescribed by the
orientation of the attractive field. It can be made omnidirectional
by replacing the static horizontal field with one that rotates fast in
the horizontal plane, making the attractive interaction effectively
isotropic. However, the rower’s orientation is subject to noise and
its motion is best described as active Brownian motion39. Such a
swimmer randomly swims in the plane and to achieve controlled
2D motion and to demonstrate its omnidirectional nature, the
swimmer is placed in a circular microfluidic channel (Figure 7).
The swimmer finds its way around the loop while being powered
by a steady magnetic field sequence†.

Conclusions
We have created two types of magnetically driven artificial swim-
mers that swim at low Reynolds number. Both are actuated by
field sequences that alternate between an attractive and a re-
pulsive interaction. The first type, the thrower, consists of two
magnetic beads that differ in size and breaks the time reversal
symmetry through a combined effect of gravity and the proximity
to a no-slip boundary (glass surface). The second swimmer, the
rower, breaks the symmetry by reorienting the dumbbell between
the attractive and the repulsive phase. We have demonstrated
its motion along a circular prefabricated path, which the swim-
mer follows without requiring any adaptations in the magnetic
field sequence. Besides the larger ferromagnetic particles that

partially rely on inertia for their rolling32, we report to the best
of our knowledge the first omnidirectional magnetically actuated
swimmers. This makes them interesting for studying collective
dynamics, and also for applications where a number of agents all
driven by the same field can navigate simultaneously through a
complex microfluidic network.
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Appendix: Numerical simulation

The simulations were based on overdamped Langevin dynamics.
The magnetic moment of a bead was determined as

~mi = µ0Viχi~B . (7)

The magnetic forces were calculated by taking into account the
dipole-dipole interaction between the particles. In addition, each
particle was subject to gravity ~Fg

i =−(ρi−ρH2O)Vigêz. The repul-
sive force between particles and between a particle and a wall
was modelled with a force Fr = F0 [exp(Γ(d0−d))−1] for surface-
to-surface distances d < d0, d0 = 0.01 µm, with Γ = 1010m−1 and
F0 = 10−14 N. The potential was chosen such that its form was in-
significant for the result. The parameters used in the simulation
are summarised in Table 1.

For bidirectional swimmers, we restricted the motion to the x−
z plane. The positions are therefore sufficiently described with a
2-component vector ~xi and a rotation angle φi for each particle.
The simulated equations of motion were

d
dt

(
~xi

φi

)
=

(
µT T,i µT R,i

µRT,i µRR,i

)(
~Fi

τi

)
+ kBT

∂ µT zT z,i

∂ z
êz

+
3

∑
α=1

√
2kBT µEV

α,i eα,iξα,i(t) (8)

with ξ describing uncorrelated white noise
〈
ξα,i(t)ξβ , j(t

′)
〉
=

δαβ δi jδ (t− t ′). The second term compensates the multiplicative
nature of the noise term with a position-dependent amplitude.
µT T is the translational mobility tensor in the x− z plane (µT zT z

its z,z component), µRR the rotational mobility around the y axis
and µT R,RT the translation-rotation coupling. µEV

α,i are the eigen-
values of the mobility tensor and eα,i the corresponding eigen-
vectors. The mobilities were evaluated as described in36, using
the series expansion for ai/zi < 0.98 and the lubrication approx-
imation from the same reference otherwise. We neglected the
hydrodynamic interactions between the particles, which have a
minor effect on motility. The equations were solved with a finite
difference method with a time step of ∆t = 0.25 µs.
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Fig. 7 Time-lapse of the omnidirectional swimmer (rower) in a circular channel. Its motion in the clock-wise direction is driven by a repeating isotropic
magnetic field sequence. The cycle frequency is 1.83 Hz and the scale bar is 10 µm.

Table 1 Parameters used in the simulation

Parameter Symbol Value Notes

Large bead:
Radius a1 2.25 µm 33

Susceptibility χ1 1.63
Small bead:
Radius a2 1.35 µm
Susceptibility χ2 0.756
Bead density ρ 1700kg/m3

Water
Density ρH2O 1000kg/m3

Viscosity η 0.001Pas
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