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ABSTRACT: We study the pattern formation in a two-dimensional
system of superparamagnetic colloids interacting via spatially
coherent induced interactions driven by an external precessing
magnetic field. On the pair level, upon changing the opening angle of
the external field, the interactions smoothly vary from purely
repulsive (opening angle equal to zero) to purely attractive (time-
averaged pair interactions at an opening angle of 90°). In the
experiments, we observed ordered hexagonal crystals at the repulsive
end and coarsening frothlike structures for purely attractive
interactions. In both of these limiting cases, the dense colloidal
systems can be sufficiently accurately described by assuming pairwise
additivity of the interaction potentials. However, for a range of intermediate angles, pronounced many-body depolarization
effects compete with the direct induced interactions, resulting in inherently anisotropic effective interactions. Under such
conditions, we observed the decay of hexagonal order with the concomitant formation of short chains and percolated networks of
chains coexisting with free colloids. In order to describe and investigate these systems theoretically, we developed a coarse-
grained model of a binary mixture of patchy and nonpatchy particles with the ratio of patchy and nonpatchy colloids as the order
parameter. Combining genetic algorithms with Monte Carlo simulations, we optimized the model parameters and quantitatively
reproduced the experimentally observed sequence of colloidal structures. The results offer new insight into the anisotropy
induced by the many-body effects. At the same time, they allow for a very efficient description of the system by means of a
pairwise-additive Hamiltonian, whereupon the original, one-component system features a two-component mixture of isotropic
and patchy colloids.

1. INTRODUCTION

Colloids constitute most soft materials and biological systems
and are characterized by coexisting length and time scales
giving rise to complex many-body interactions and a rich
diversity of self-assembled structures.1−14 Besides their obvious
technological importance, they are frequently seen as model
systems for studying the fundamental relationship between
interactions at the particle level and macroscopic organization
or self-assembly. In order to understand the macroscopic
properties of such systems theoretically, it is tempting to
replace the many-body interactions with effective pairwise
additive forces. Such a mapping cannot be exact: the form of
the effective interactions depends on the route in which they
were extracted, and they are typically density-dependent or
even state-dependent, which might limit their practical use.15,16

Nevertheless, when these restrictions are properly accounted

for, the reduction is very rewarding since it leads to an
enormous simplification of the original problem.
A particularly interesting case of colloids with tunable

interactions is superparamagnetic colloids. These particles
carry no magnetic dipole moment in the absence of an external
magnetic field, but they feature a high effective magnetic
susceptibility of χeff ≅ 10−11 A m2/T due to doping with a
ferromagnetic core (usually γ-Fe2O3).

17 Thus, a weak external
field B induces a magnetic moment m = χeffB on the colloids
perfectly aligning with the former; here, magnetic moment
fluctuations can be ignored.17,18 In the case of super-
paramagnetic colloids, the physical interactions are induced
by external magnetic fields and the mutual depolarization
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effects lead to complex many-body interactions and rich phase
behavior. Unlike most other colloidal interactions, magnetic
interactions are not mediated by the suspending medium,
which hugely simplifies their theoretical description (as
compared to, for example, charged colloids) and makes
magnetic colloids a clean model for many-body systems.
Accordingly, superparamagnetic colloids have been employed
to study self-assembly and two-dimensional phase transitions
both under static17−25 and under rotating26−34 external
magnetic fields.
The subject of this paper is the two-dimensional (2D)

assembly of superparamagnetic colloids. The spatially coherent
induced colloidal interactions are driven by an external
magnetic field that precesses around an axis perpendicular to
the plane on which the colloids lie. These interactions can be
efficiently controlled by the geometry of the field, i.e., by the
opening angle θ of the cone on which the latter is precessing.
Depending on the opening angle, the induced interactions
range from simple pairwise additive dipolar repulsions at small
angles θ ≈ 0, interactions with short-range attraction and long-
range repulsion with pronounced many-body effects at
intermediate values of 45° ≲ θ ≲ 60°, and peculiar spatially
isotropic van der Waals-like interactions at the so-called magic
angle θm ≈ 54.7° to pairwise additive dipolar attraction at large
θ ≈ 90°. The interactions between two isolated colloids are
always isotropic in the plane of confinement; however, at
certain angles θ the many-body terms introduce an effective
anisotropy that results in the formation of chains when more
than two colloids are present.27,35,36 The observed morphology
in the experiments ranges from hexagonal crystals at small θ to
a mixture of crystals and short chains to percolated chains
coexisting with pockets of free colloids to frothlike structures
coarsening due to purely attractive forces at large θ. On the
basis of the rich behavior observed in the experiments and on
the character of the many-body effects, we constructed a coarse-
grained model: a mixture of patchy and nonpatchy colloids with
anisotropic effective interactions. We combine Monte Carlo
and genetic algorithm methods to extract optimal parameter
values for the effective interactions. By varying the composition
ratio of patchy vs nonpatchy particles, we are able to reproduce
the structural properties of the system quantitatively for
opening angles of 0 < θ < θm.
The rest of the article is organized as follows. In section 2, we

describe the experimental setup and techniques, and we give an
overview of the experimental results. In section 3, we describe
theoretically many-body interactions due to depolarization
effects, bringing forward the complexity of the problem and the
necessity to design an effective pairwise-additive system that
accounts for the richness of the experimental results. This
inverse-engineering procedure is described in section 4, where
it is also demonstrated that it brings forward excellent
agreement with experimental results both for structure and
dynamics. Finally, in section 5 we summarize and draw our
conclusions, whereas some technical aspects regarding the
genetic algorithm approach employed in the inverse engineer-
ing are relegated to the Appendix.

2. EXPERIMENTS
In the experiments, we studied the behavior of a suspension of
superparamagnetic colloidal spheres with a diameter of σ = 1.05 μm
(Dynabeads, MyOne Carboxy; dissolved in Dynabeads solution to
prevent sticking) enclosed between two coverslips, confining the
colloids to two spatial dimensions. The time-dependent external

magnetic field was applied by three orthogonal pairs of Helmholtz
coils as depicted in Figure 1(a).

In the absence of the external magnetic field, the colloids were
arranged in a random configuration, which served as the initial
condition for the experiments. Initially, the static magnetic field Bz =
B0z ̂ with magnitude B0 = 2.5 mT was switched on, inducing repulsive
dipolar interactions and a hexagonal colloidal arrangement. We then
simultaneously decreased the perpendicular static component and
increased the orthogonal rotating component of the field, while
keeping the magnitude B0 of the magnetic field constant. The external
field thus precessed on a cone with an opening angle θ [see Figure
1(b)]:
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The induced magnetic moments on the colloidal particles follow the
external field, and ideal colloids should not physically rotate. We used
a high rotational frequency of 2πω ≈ 400 Hz for the magnetic field so
that the field variations were much faster than the typical translational
and rotational relaxation times of the colloid, which are on the order of
a few tens of seconds. Under these assumptions, the effect of the
driving field on the colloids is well captured by the time-averaged
values of the field. However, due to pinning defects and shape
anisotropy the constantly rotating external field exerts a small net
torque on the colloids, resulting in physical rotation with a smaller
frequency. Physical rotation would imply hydrodynamic currents and
additional complex interactions in the system. Moreover, since the net
rotation can be of the same order as the colloidal relaxation times, the
time-averaged fields would not be sufficient to describe the system and
kinetic synchronization effects may become important.26,33 In this
work, we wanted to prevent such complex interactions and study only
the effects of time-averaged magnetic induced interactions. Therefore,
we switched the direction of the field precession every 360° to
suppress the net rotation of the colloidal particles.27

By increasing the relative magnitude of the rotating component of
the magnetic field, we slowly varied the opening angle θ from zero to
90°, and as epitomized in Figure 2, we observed distinct colloidal
patterns: for small θ values, crystalline structures with hexagonal
symmetry were stable. At around θ = 45°, a fraction of colloids
assembled into short chains, which grew longer with increasing θ and
eventually formed a percolating network coexisting with free colloids.
The amount of free colloids vanished entirely near the magic angle of
θm ≈ 54.7°,27 beyond which frothlike structures were observed. In the
experiments, we kept the conditions at each θ constant for a
sufficiently long time, i.e., several minutes, in order to ensure that a
steady state had been reached. Self-assembled structures emerged in
less than 10 s, and the systems fully settled within 120 s. The mixture
of percolating and free colloids appeared to be stable: once formed, it
did not evolve over the time of the experiment. Beyond θm, the
interactions are purely attractive, and the frothlike structures slowly
coarsened in the course of the experiment.

Figure 1. (a) Sample cell and surrounding pairs of Helmholtz coils.
(b) Total external magnetic field precessing on a cone with opening
angle θ.
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3. MANY-BODY INDUCED INTERACTIONS
The peculiar behavior observed in the experiment is due to the
complex nature of the induced magnetic interactions among the
colloids. The local field at the position of each colloid i is the
sum of the external precessing magnetic field and the dipolar
contributions of all other colloids in the system, Bloc(ri, t) ≡
Bext(t) + ∑j≠iBj(rij, t) with rij ≡ ri − rj. The local field
determines the induced dipoles mi(t)

∑πσ
μ

χ= +
≠

t t tm B B r( )
6

( ( ) ( , ))i
j i

j ij

3

0
m ext

(2)

where χm denotes the magnetic susceptibility of the material37

and the prefactor expresses the aforementioned effective
magnetic susceptibility of the colloids,
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μ
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3
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m
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which is, evidently, a size-dependent quantity. The field
induced by the jth colloid at the position of the ith colloid is
then given by
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where rîj = rij /|rij|. Equations 2 and 4 must be solved self-
consistently.
The emerging colloidal interactions are inherently many-

body, i.e., the energy E({ri}) of any given configuration of
colloids {ri} depends on the positions of all colloids in the
system. In particular, it is given by the time average over the
period of the field revolution:

∑= − ⟨ · ⟩
=

E t tm B r
1
2

( ) ( , )
i

N

i i
1
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(5)

where ∫τ⟨ ⟩ ≡
τ

t t t( ) (1/ ) d ( ) is the average of an arbitrary,

time-dependent quantity t( ) over a period τ of the rotation of
the external field and the sum runs over all N particles in the
system. To demonstrate the many-body nature of the
interactions, let us consider a simple system of three colloidal
particles in the precessing external field and compare the energy
of two close-packed configurations of these three colloids in the
xy plane: a chain with energy Ech(r1,r2,r3) and an equilateral
triangle Etr(r1,r2,r3). Let us build up the system one by one: the

dipole moment induced on an isolated colloid in the external
field is m0 = χeffB0 and its energy is E1 = −1/2m0B0 ≡ −1/2E0.
The pair potential V(|r1 − r2|) ≡ V(r12) for two isolated
colloidal particles separated by a distance r is obtained by
solving eqs 2−5 for the pair and subtracting twice the energy of
an isolated colloid, V(r12) ≡ E(r1, r2) − E0. The resulting two-
body interaction takes fully into account the mutual
depolarization effects of the two particles and is purely
repulsive with V(r) ∝ r−3 at θ = 0 and then develops a short-
range attraction (while maintaining the long-range repulsion)
with increasing θ until it becomes completely attractive at the
magic angle θm with V(r) ∝ −r−6 (see ref 27 for more details).
Upon further increasing θ → 90°, the potential crosses over to
a V(r) ∝ −r−3 dependence. The evolution from θ = 0 to 90° is
shown in the upper row of Figure 3. We evaluated the energies

of the two three-particle configurations Ech and Etr in two ways:
(1) By assuming pairwise additivity of the energy: Eα

p(r1, r2, r3)
− 3E0/2 = V(r12) + V(r13) + V(r23), where α = ch,tr and V(rij)
are the pair interactions between colloids i and j evaluated in
the previous step. We obtain for the chains Ech

p − 3E0/2 =
2V(σ) + V(2σ) and for the triangles Etr

p − 3E0/2 = 3V(σ);
therefore, the energy difference between the two arrangements
in this pairwise additivity approximation is given as ΔEp ≡ Ech

p

− Etr
p = V(2σ) − V(σ). (2) By self-consistently solving eqs 2

and 4 for three particles, a procedure which correctly
incorporates the three-body interaction terms.
The resulting energy differences from the two approaches

above are shown in Figure 3. It is evident that the omission of
the three-body interaction terms leads to qualitatively wrong
structural predictions: in the range of θ where clusters are
expected to form (roughly the nonshaded region in Figure 3),
the pairwise picture predicts triangular clusters, while the three-
body terms, consistent with the experimental observations
(Figure 2), stabilize the chains for a wide parameter range of θ
≲ 62°. The three-body interaction terms are anisotropic and
create a lateral barrier around a colloidal dimer (see Figure 5
and ref 27), so the third particle attaches along the axis and

Figure 2. Patterns observed in the experiments at various opening
angles θ of the external magnetic field with magnitude B0 = 2.5 mT.
The two-dimensional density of the colloidal particles is the same for
all snapshots and equals ρσ2 = 0.33.

Figure 3. Comparison of the energy difference ΔE ≡ Ech − Etr
between chain and triangular clusters of three particles for pairwise
additive potentials (black dashed line) and for the full many-body
interactions (red solid line). The shaded region depicts the range of θ
< 45° where the pair interactions are purely repulsive and clusters are
not stable against hexagonal crystalline arrangement. For θ > 45°, the
triangular configuration is the stable one when ΔE > 0, whereas chains
prevail in the regions where ΔE < 0.
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forms a short chain. A correct description of the full N-body
problem, therefore, would require the self-consistent evaluation
of the local fields and magnetizations for any arbitrary particle
configuration, a procedure which is computationally very
involved and includes, in principle, the whole hierarchy of N-
body forces in the problem. It would be advantageous to have
an effective, physically informed pairwise-additive description of
the system by means of a model of interactions that are capable
of reproducing the experimental results with high accuracy.
This endeavor is the subject of the following section.

4. INVERSE ENGINEERING

In the past decades, computer simulations have proven to be an
extremely reliable tool for predicting and analyzing the
structural and dynamical properties of various colloidal systems,
ranging from hard spheres to more complex structures such as
polymers38 and bioproteins.39,40 Such simulations often rely on
effective pair potentials, which are obtained by tracing out
superfluous degrees of freedom while still retaining the key
features of the system. However, as demonstrated above, the
strong and anisotropic many-body effects in the presented
experimental system make it conceptually difficult (if not
impossible) to construct effective isotropic and state-
independent potentials using approaches that rely on the
pairwise additivity of the interactions. This is a major problem
even for systems with weaker many-body effects, such as
charged colloidal suspensions,41 since the effective (isotropic)
interactions depend not only on the colloidal density but also
on the exact arrangement of colloids at a given density.
Therefore, a different concept is called for regarding the

theoretical modeling of the systems at hand. In this
contribution, we approach the problem from a phenomeno-
logical, physically informed, top-down perspective, whereby we
carefully engineer effective pair interactions that quantitatively
reproduce the experimentally observed structures in the range
of the opening angles 0 ≤ θ ≤ θm. On the basis of the
experimental facts regarding structure formation, see Figure 2,
we argue that the anisotropy introduced by the many-body
interactions has a qualitatively similar effect on the macroscopic
structures as if the colloidal particles were patchy, i.e., decorated
with well-localized interaction sites on their surfaces (see Figure
4). Furthermore, two types of particles can be identified: free,
unconnected colloids (type I for isotropic) and colloids forming

chains (type P for patchy). At small opening angles θ of the
magnetic field, predominantly type I particles are observed,
while at intermediate values below θm both types coexist, where
the chains form percolated networks with free colloids in the
interstitial pockets. For values of θ > θm, only type P colloids
trapped in the percolated network are present.
Accordingly, we model the experimental system by

introducing an effective mixture of particles I and P and
denote the fraction of patchy particles as Π = NP/N, where N ≡
NP + NI is the total number of colloids in the system. We
expect that the ratio between the number of isotropic and
patchy colloids strongly correlates with the opening angle θ, in
particular, Π = 0 at θ = 0 and Π = 1 for θ ≥ θm. The effective
pair potential V(1, 2) between two particles at positions ri, rj
and orientations n̂i, n̂j (if patchy) is modeled as follows
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where the first term VLJ is the standard Lennard-Jones potential
modeling the impermeability of the particles
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The second term on the right-hand side of eq 6 represents the
repulsive dipolar potential between particles that leads to
hexagonal ordering for θ→ 0. The two isotropic terms describe
the interactions involving isotropic particles (I−I and I−P),
while the interactions between two patchy particles are
characterized by an additional anisotropic patchy potential Vp.
The functional dependence of this term is ∼r−6. It is physically
reasonable to assume two different prefactors Ap ≠ A
depending on whether the interacting particles are both patchy
since the isotropic particles are modeled as experiencing only
the perpendicular z component of the magnetic field.
In our model, each patchy colloid has two repulsive and two

attractive patches, which are placed on diametrically opposite
sides of the colloid, as schematically depicted in Figure 4. We
describe the orientation of each particle in the laboratory frame
of reference via the unit vector n̂i, which connects the two
attractive patches. Here, it is noteworthy that the patchy
particles are constructed in such a way that symmetry n̂i = −n̂j
is obeyed. The anisotropic interaction potential is thus given by
Vp = Vattr(rîj, n̂i, n̂j) + Vrep(rîj, n̂i, n̂j), where the functional forms
of the two contributions are given by

α φ α φ π= − − + − − ̂ · ̂ ̂ · ̂V n r n r[exp( ) exp( ( ) )]( ) ( )d d
i jij ijattr p p

2 2

(8)

and

= ̂ · ̂ ̂ · ̂ − ̂ · ̂V n r n r n n
3
2

[( ) ( ) 1] ( )i ij j ij i jrep
2 2 2 2

(9)

Here, φ = cos−1(n̂i·n̂j) denotes the relative angle between the
attractive patch orientations of two P-type colloids i and j. The
patchy particles experience maximum attraction if φ = 0 or φ =
π and at the same time n̂i,j ∥ rîj. If n̂i,j ⊥ rîj, then the attractive
potential is zero. The two parameters αp and d regulate how
broad the attractive patches are, and they thus pertain to the
architecture of the patchy particles, not to their physical

Figure 4. Three exemplary orientations of patchy particles, with two
attractive (blue) and two repulsive (red) sites at diametrically opposite
sides of the colloids. (a) n̂i∥rĵ and n̂i,j∥rîj, the particles experience the
maximum attraction. (b) n̂i ⊥ rî and n̂i ⊥ rîj, the particles experience
only the isotropic force. (c) n̂i∥rĵ and n̂i,j ⊥ rîj, the particles feel the
maximum repulsion.
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properties and interaction strengths. The quantity αp
determines the sharpness of the crossover between the patchy
regime and the isotropic one on the surface of the colloid,
whereas d determines the flatness of the patch−patch
interaction. In particular, the crossover becomes sharper with
increasing αp, while high values of d lead to a flattening of the
patched regions. Particles that interact solely through these
attractive patches preferably arrange in parallel lines. Therefore,
in order to construct a reasonable potential landscape around a
pair of particles, additional repulsive patches are needed. The
repulsive contribution, Vrep, leads to a sensitivity on φ in the
case of n̂i,j ⊥ rîj. If φ = 0 or π, then the particles experience the
maximum repulsion. The repulsive contribution vanishes for φ
= π/2 as well as in the case of n̂i,j ∥ rîj. Figure 4 shows a
schematic example of three different orientations of patchy
particles.
In Figure 5, we show a comparison between the potential

landscapes around two adjacent colloids retrieved by (a) self-

consistently solving the many-body interactions described by
eqs 2−5 and (b) using the effective pair potential postulated in
eq 6. In the case of the magnetic colloids, a very strong and
long-ranged lateral barrier around the colloidal dimer emerges
due to many-body effects, which leads to the preferential
formation of chains. In comparison, the effective potential has a
considerably shorter range, leading to only a very thin repulsive
layer, which, on its own, would not be sufficient to drive the
formation of chains. Instead, the preferential chain formation is
driven by the attractive patches, which are exposed along the x
axis. Indeed, we found that the proposed effective interaction is
capable of reproducing not only the correct structural
properties but also the dynamics of the original system.
Equation 6, in conjunction with eqs 8 and 9, leads to a large

parameter space (εLJ, A, Ap, εp, αp, d, and the ratio Π) that has
to be explored to determine a suitable mapping. From the
experiments, the radial distribution functions g(r) have been
evaluated at density ρσ2 = 0.165 for three values of the opening
angle, namely, θ = 39, 46, and 59°. We used these functions as
the criterion to quantify the quality of our model predictions.
At this point, we emphasize that it is highly nontrivial to
reproduce the typical patterns, number of neighbors, or even
dynamics by matching the radial distribution functions, which is
a strongly averaged quantity, from experiments and simulations.
To find the optimal values for the parameters, we used a

genetic algorithm (GA) combined with Monte Carlo (MC)
simulations: at each step, a new set of parameter values was
determined by the GA, and then MC simulations were
performed to evaluate the g(r) (further details in the
Appendix). This procedure was then repeated until we found

a good agreement between the g(r) from experiments and
simulations. In addition, we also checked visually whether the
final structures shared qualitative features with the experiment.
Although it is generally possible to apply this approach to

determine all seven free parameters for every single state point,
such an endeavor would be neither satisfactory in principle nor
always feasible in practice due to the shear number of
parameter combinations. It is advantageous to proceed with a
physically informed approach which a priori recognizes those
parameters that should have a dependence on the opening
angle θ of the field and, possibly, on the density of the
ensemble and treats them separately from those that should
not. In this way, the parameter space is reduced prior to
performing the optimization.
Our reference state is the one with colloidal density ρref = ρσ2

= 0.165 and the smallest opening angle for which nontrivial
patterns are obtained in the experiment, i.e., θ = 39°. We then
used the GA to determine the values of all seven model
parameters at this state point, which were subsequently fine-
tuned by hand. We ensured that the obtained parameters
resulted in the best matching between experiments and
simulations by restarting the GA with the optimized parameters
and indeed did not find any further improvement. As the
parameters εLJ, A, αp, and d refer to generic steric repulsions
(εLJ), isotropic−isotropic interactions (A), and the patchy
particle architecture (αp and d), we postulate that these are
independent of both the opening angle and the density of the
system. In this way, the search space of the problem is reduced
from having to find seven parameters to three, namely, Ap, εp,
and Π. At the same time, on physical grounds, we know what to
expect for the variation of these three with the opening angle θ
at a fixed colloidal density ρσ2. At θ = 0, only the dipolar
interaction term is present; therefore, Π(θ = 0) = 0. At θ = θm,
the dipolar term should vanish, resulting in Ap(θm) = 0 and
Π(θm) = 1. Moreover, we surmise that both Ap and εp are
decreasing monotonically with increasing θ. We then employed
the GA to determine the remaining three θ-dependent
parameters Ap(θ), εp(θ), and Π(θ) from the available
experimental data, with the fulfillment of the above physical
expectations serving as an additional test of the validity of our
approach. Finally, we used linear interpolation to determine Ap,
εp, and Π at intermediate θ values.
In the experiments, we have used video microscopy and

custom-made particle recognition software to characterize the
patterns by evaluating the radial distribution function and the
nearest-neighbors statistics. By employing the aforementioned
mapping procedure for the case θ = 39°, we found that in order
to reproduce the observed phases and especially the Y junctions
at higher θ values, the attractive patches need to be relatively
broad. Therefore, we fixed the values to αp = 1.5 and d = 8. The
depth of the Lennard-Jones potential was set to the value εLJ =
55kBT, while the strength of the dipolar repulsion was set to A
= 100kBT. As mentioned before, these values were kept fixed
for all other combinations of the opening angle of the field and
the colloidal density. Here, we found that our results were most
sensitive to changes to the energy scales, i.e., A and εLJ, while
changes to the patch geometry (through αp and d) had a
smaller impact on the emerging structures. In general, our
results were robust with respect to (small) fluctuations of these
four fixed parameters, since the GA attempts to optimize the
remaining free parameters accordingly to match the g(r).
Using the GA, we found Π = 0.06, Ap = 78kBT, and εp =

57kBT for the θ-dependent values at the opening angle θ = 39°

Figure 5. (a) Many-body energy landscape around a pair of magnetic
colloids for θ = 46° and B0 = 2.5 mT. (b) Energy landscape around a
pair of patchy particles obtained by the effective pair interactions with
Π = 0.96, Ap = 15kBT, and εp = 21kBT. The gray area corresponds to
energy values above Emax due to steric effects.
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at density ρσ2 = 0.165. For the case θ = 46°, we found Π = 0.96,
Ap = 15.0kBT, and εp = 21kBT. These results are consistent with
the theoretical prediction of Π = 1.0 and Ap = 0.0 at the magic
angle θ = θm ≈ 54.7°. For opening angles beyond θm, the
colloidal particles become purely attractive (hence Ap < 0).
Moreover, the θ-dependence of the parameters Ap and εp
vanishes, since Π does not increase anymore. In this range, we
found that the experimental results could be matched the best
using Ap = −kBT and εp = 15.2kBT.
The quality of the inverse-engineering procedure at this fixed

density is judged by a comparison between the theoretical and
experimental radial distribution functions g(r) as well as the
characteristic configuration snapshots of the system. This
comparison is shown in Figure 6. The excellent agreement
between the radial distribution functions offers strong support
to our approach, yet one could argue that this is expected, since
it is precisely the minimization of the integral of the absolute
value of their difference that is aimed for in our approach.
However, the g(r) is a rotationally averaged quantity and
agreement between theory, and the experiment between the
two offers no guarantee for a matching between typical
configurations. In this sense, the remarkable agreement
between experimental and theoretical snapshots of the system
at all opening angles, as shown in the insets of Figure 6, offers
strong corroboration of the reliability of our approach.
To quantify further the local coordination of the investigated

systems, we performed a neighbor analysis of the emerging

patterns where we counted the number of nearest neighbors for
each colloid. A comparison between the results from experi-
ments and simulations is shown in Figure 7, demonstrating
once again the excellent quantitative agreement between them.
These data show that a vast majority of particles were isolated
at small opening angles θ and correspondingly small fractions
Π. As the angle is slowly increased, the particles assemble to
chains and Y junctions, which is reflected in the large peaks for
two and three neighbors. For θ ≥ θm, frothlike structures
emerged, leading to a relatively broad distribution of nearest
neighbors.
Until now, the comparison has been performed for a fixed

colloidal density. It has to be determined which of the model
parameters are expected to depend on concentration and in
which fashion. Consistently with the aforementioned philoso-
phy, we leave parameters A, εLJ, αp, and d untouched and we
focus on Ap, εp, and Π. To further restrict the (apparent)
freedom in their choice, we refer again to physical arguments.
These three parameters encode the many-body effects which
arise due to the depolarization effects on any given colloid for
all of the other colloids in the system. As this effect is due to the
long-range dipolar interaction, we surmise that it can be taken
into account in a mean-field fashion and thus that the free
parameters will scale linearly with density for any given opening
angle θ. Accordingly, we postulate the following density
dependence, introducing a constant scaling parameter λp:

Figure 6. Radial pair distribution function g(r) obtained from experiments (solid red lines) and simulations (dashed blue lines). The insets show
representative snapshots from the experimental systems (left half) and from the model systems (right half). Results are shown for opening angles θ =
39, 46, and 59°, and the respective values of Π, namely, Π = 0.06, 0.96, and 1.00. The density is fixed at the value ρσ2 = 0.165.

Figure 7. Distribution of the number of nearest neighbors extracted from (a) experiments and (b) simulations.
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ρ λ ρ ρ ρ ρ= + −⎡⎣ ⎤⎦A A( ) 1 ( )/ ( )p p ref ref p ref (10)

and

ε ρ λ ρ ρ ρ ε ρ= + −⎡⎣ ⎤⎦( ) 1 ( )/ ( )p p ref ref p ref (11)

The GA-search for ρ ≠ ρref thus proceeds as follows. With
the functional dependence Ap(Π) and εp(Π) acquired at the
density ρref, we first rescale these functions according to eqs 10
and 11 above. This leaves us, for an arbitrary density ρ ≠ ρref,
with just two unknown parameters, Π(θ) and the prefactor λp
above, which we take to be θ-independent. With the choice λp =
0.6, our approach yields now, also at a different density ρσ2 =
0.33, patterns that strongly resemble the ones observed in the
experiments, as shown in Figure 8.
Finally, we also performed a qualitative study of the short-

time dynamics of both the experimental and the model systems.
Figure 9(a) shows a color-coded snapshot of the experimental
system, which was obtained by overlapping 10 consecutive
snapshots separated by 0.1 s, and it is very visible that we can
distinguish between two different types: particles constituting
the percolating network move only barely over the course of
the image capture (1 s) while the free colloids and particles at

the chain ends exhibit a significantly higher mobility. These
inhomogeneous dynamics are nicely reproduced in the model
system as illustrated in Figure 9. In the simulations, the patchy
particles form the percolating mesh and are therefore frustrated
in their motion, while the remaining isotropic particles can
move in the voids of the network. This qualitative agreement
between experiments and simulations is remarkable, since we
used only static properties, i.e., the radial pair distribution
function g(r), to determine the model parameters.

5. CONCLUSIONS

We studied the collective ordering of superparamagnetic
colloids confined to 2D and driven by a high-frequency
precessing external magnetic field. In the experiments, we
observed a rich sequence of quasi-equilibrium structures as we
varied the parameters of the external field. The theoretical
description of the system is challenging due to the complex
depolarization effects. The observed structures could not be
reproduced by simple isotropic density-dependent effective pair
interactions. On the basis of the insights from many-body
calculations, we postulated a coarse-grained model that is a
binary mixture of patchy and nonpatchy particles with effective
anisotropic pair interactions. By adjusting the mixture
composition, we modeled different opening angles of the
external magnetic field. We then employed a heuristic
optimization scheme based on genetic algorithms in con-
junction with Monte Carlo simulations to determine the model
parameters by matching selected radial distribution functions
from experiments and simulations. This physically informed
coarse-graining approach has been inspired by the particular
pattern formation in the experiments. However, the idea of
modeling many-body effects via mixtures of patchy and
isotropic particles is general; therefore, our method can be
transferred to other similar problems by adjusting the model
parameters. Following this route, we achieved quantitative
agreement between the colloidal structures in the experiments
and simulations. Moreover, even though the effective potentials
were derived from purely static quantities, the coarse-grained
model qualitatively reproduced also the colloidal dynamics: in
the region of parameters where percolated and free colloids
coexist, the experiments and simulations show dynamic
heterogeneity. In addition, we found that the wall-clock
simulation time for the coarse-grained systems was about 2

Figure 8. Typical system configurations for ρσ2 = 0.33 from experiments (left half) and simulations (right half). (a) θ = 41° and Π = 0.16, (b) θ =
44° and Π = 0.36, (c) θ = 46° and Π = 0.56, (d) θ = 48° and Π = 0.86, (e) θ = 55° and Π = 1.0, and (f) θ = 90° and Π = 1.0.

Figure 9. Relative mobility of colloids obtained from (a) experiments
by overlapping 10 consecutive snapshots with a time step of 100 ms
and (b) simulations by measuring the mean-square displacement of
each particle. Experiments and simulations have been conducted at ρσ2

= 0.33 and a field opening angle of θ = θm. Particles colored in blue
exhibit no or very little mobility, while particles colored in red have a
relatively large mobility. Note that the free colloids and the dangling
chain ends clearly move more than the colloids forming the
percolating mesh.
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orders of magnitude shorter than for the self-consistent
solution. Hence, we conclude that the effective pair potentials
of our model can be used in conjunction with conventional
simulation methods to predict structural and dynamical system
properties. In particular, our proposed method allows for
studying the structure factor at low wavelengths, providing
information on thermodynamic properties of the system, which
are difficult to retrieve through experiments.

■ APPENDIX: GENETIC ALGORITHM
The genetic algorithm was originally developed by John
Holland42 in the 1970s and since then has also achieved high
popularity in the realm of soft matter physics.23,43−45 As the
naming suggests, this heuristic optimization method mimics the
fundamental principles of biological evolution, i.e., selection,
recombination, and mutation, to find the best solution.
Following this nomenclature, we will refer to each possible
solution as an individual , where every individual contains a
chromosome which holds the parameter set in a binary
representation bi.
In our implementation, every free simulation parameter (Ap,

εp, and Π) has a corresponding binary representation bi, where
each bi is a sequence of 32 elements from a binary alphabet

∈ {0, 1}. We then interpret each bi as a 32 bit fixed-point
variable, with values ranging from 0 to 1 in steps of 2−32 ≈
10−10. Hence, each individual is described by | | = 96 genes.
This binary representation of the parameters is the so-called
genotype, which corresponds to a point in search space and
hence one candidate solution (phenotype). We can then
translate any given bi to its corresponding simulation parameter
by multiplying by its upper bound (Ap

max = 100kBT and εp
max =

100kBT). All N individuals belonging to the same iteration are
called a generation i.
The individuals of the first generation 0 are chosen

randomly, where the typical number of individuals comprising
one generation is typically =N 40. Every individual is
associated with a so-called fitness, which quantifies the quality
of the represented solution. As outlined in section 4, we employ
the deviation from the experimental radial distribution function,
gr(r), as our quality indicator. Thus, the fitness function is given
by

∫= − | − |( )f g r g r r( ) exp ( ) ( ) dexp (12)

It is readily visible that the fitness of an individual approaches 1
if the g(r) from the simulations is close to the experimental
findings and that →f ( ) 0 for large discrepancies. After all
individuals of one generation i are examined, the subsequent
generation +i 1 is populated by new individuals. In this process,
the best individual from the previous generation is transfered
unaltered to the new generation (elitism), while the remainder
of the population is created by performing one-point crossovers
on the genetic material of the two parents. The latter are
chosen with probabilities proportional to their fitness values,
namely,

=
∑ ∈

p
f

f
( )

( )
i (13)

Such a selection mechanism is often referred to as a Roulette-
wheel selection. After two parents are chosen, the chromo-
somes of these two individuals have to be recombined.

Therefore, a cutting point is randomly selected at which the
chromosomes are sliced and merged into a new chromosome.
Thus, this recombination step is completely blind to the
underlying representation of the parameters, as it can dissect a
bi.
In the next step, point mutations are performed, i.e., arbitrary

bits in the chromosomes are flipped from 0 to 1 and vice versa.
This procedure is of utmost importance to increasing the
genetic diversity by introducing new or lost information into
the system, and the probability for each mutation is typically 1
to 2%. This cycle is then repeated until the model parameters
converge, which was typically the case after about 20
generations. Finally, we take the results obtained by the GA
and optimize them via a hill-climbing algorithm.
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