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also on the aspect ratio of its cross section. The results of 
our numerical simulations are supported by a theoretical 
analysis and are in good agreement with experimental data, 
acquired by optical velocimetry with optical tweezers.
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1 Introduction

Microcavities have become an integral part of diverse 
microfluidic devices. They have been, for example, used 
as flow-free diffusion chambers for single-cell experiments 
and studies of soft biological systems (Luo et al. 2008; Liu 
et al. 2008; Vrhovec et al. 2011; Omar et al. 2014; Yew 
et al. 2013). On the other hand, microcavities have also 
been used for controlled formation of microvortices in 
applications ranging from a centrifuge on a chip (Shelby 
et al. 2003; Mach et al. 2011) to analysis of microorgan-
ism behavior (Stocker 2006) and cell sorting (Zhou et al. 
2013; Hur et al. 2011). Interestingly, while the microcav-
ity vortices are a central feature in some applications, they 
have not been observed in others. It has been noted that a 
high depth-to-width ratio of the cavity and a high Reyn-
olds number contribute to the emergence of vortices (Yu 
et al. 2005; Stocker 2006; Fishler et al. 2013), but the flow 
properties, including in particular the counter-vortex posi-
tion, have not been thoroughly analyzed at low Reynolds 
number.

In applications demanding high flow rates, the vortices 
have been observed in cavities of various geometries. For 
example, applications of high-throughput particle sorting 
(Zhou et al. 2013; Hur et al. 2011) and the studies of a cen-
trifuge on a chip (Mach et al. 2011) have reported vortices 
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at Reynolds numbers higher than approximately Re = 40 , 
which is consistent with recent analyses of cavity flow 
using microparticle image velocimetry (Shen et al. 2015). 
However, typical Reynolds numbers in single-cell experi-
ments and in many biological applications are much lower, 
since a high flow rate could hinder accurate single-cell 
analysis and even result in irreversible cell damage. To put 
a high Reynolds number in a biologist’s perspective: since 
the Reynolds number is defined as Re = ρv0d/η, where ρ 
is the fluid density, v0 the mean flow velocity, d the chan-
nel dimension, and η the fluid viscosity, the flow velocity 
of water in a 100-μm-wide microchannel at Re = 40 would 
reach 40 cm/s. In other words, at this flow rate a cell would 
traverse a typical 100-μm-wide microscope field of view in 
just 0.25 ms.

Several studies have shown that the flow velocity in a 
microcavity drops off rapidly with the distance from the 
cavity entrance (Yu et al. 2005; Vrhovec et al. 2011), with 
a characteristic length as small as approximately 1/4 of the 
cavity width (Yew et al. 2013; Shen et al. 2015). Hence, 
already in a cavity that is only two times longer than its 
width, the flow at its termination drops to ∼ e−8 ≈ 0.03% 
of the entrance magnitude and in the Stokes regime 
becomes negligible even in comparison with diffusion. 
The flow pattern at the cavity entrance, however, remains 
important for the mass transfer into the cavity (Yew et al. 
2013). Moreover, for residual flows this weak, the influence 
of the terminating boundary on the overall flow field in the 
microcavity is hardly noticeable: e.g., in the middle of the 
cavity it amounts to ∼0.03 % of the velocity magnitude 
there.

Hence, such long microcavities can be sensibly modeled 
as having infinite length. An example of a long microcavity 
is the diffusion chamber described in Vrhovec et al. (2011). 
Another example is the sprouting of capillaries during angi-
ogenesis, a process that is essential for normal tissue devel-
opment but also for tumor growth. Here, a sprout extending 
perpendicularly from the capillary can grow many times its 
diameter (Galie et al. 2014). The typical flow rates in the 
capillary are of the order of 10 μm/s, and its cross section 
is of the order of 10 μm, rendering the Reynolds number 
in the capillary considerably lower than 1. Because the 
epithelial development depends crucially on the transport 
of nutrients and on the shear stress exerted on the vessel 
walls (Galie et al. 2014), understanding the flow pattern in 
a microcavity is an essential step toward understanding the 
physiology and pathology of capillary sprouting.

In this work, we combine numerical modeling with 
theoretical analysis and experimental verification in order 
to obtain a comprehensive picture of flow in microcavi-
ties at low Reynolds number. In particular, we identify the 
main parameters that control the emergence and configura-
tion of vortices and the falloff of the fluid velocity along 

the microcavity. We investigate the dependence of the flow 
morphology on the aspect ratio of the microcavity cross 
section and point to the existence of a well-defined aspect 
ratio threshold separating the flow regimes with and with-
out counter vortices. We consider microcavities which are 
sufficiently long, so that the flow at the cavity ending effec-
tively vanishes in the sense that the overall flow pattern in 
the cavity does not depend notably on its length any more. 
Moreover, in the “Appendix,” we consider the theoretical 
flow solutions in the limiting cases of vanishing and infinite 
values of the aspect ratio, focusing on the features that pre-
serve relevance also for practical, experimentally accessible 
aspect ratios.

2  Methods

2.1  Problem formulation

The model microcavity in our study consists of a dead-end 
microchannel extending perpendicularly from the main 
microchannel, Fig. 1. The cavity length is a and x = 0 cor-
responds to the junction, its width is b, −b/2 < y < b/2 , 
and the depth of all the channels is h, where 0 < z < h. 
Cavities of minimum length a ≈ 2.4b were used, all quali-
fying as long according to the above argument. The width 
of the main channel is the same as the width of the cav-
ity. In the studied experiments, the Reynolds number in the 
main microchannel is Re ∼ 1; however, in the microcavity, 
it shortly becomes much smaller as the magnitude of the 
velocity drops off rapidly along x.

Generally, in a long microcavity, the shape of the flow 
can depend only on the Reynolds number and the chan-
nel cross section aspect ratio h/b, since one of the lengths 

Fig. 1  Microcavity geometry and definition of the coordinate axes. 
The microcavity extends perpendicularly from the main channel. The 
length of the microcavity is a, and its width is b (a > b). The depth of 
the cavity and the main microchannel is h
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b or h can be used to define the length scale of the system 
and then all lengths and velocities are scaled relative to it. 
For Re → 0, the shape of the flow field does not depend 
on Re any more, i.e., the velocity field converges to the 
low-Re configuration that scales with v0, while h/b is the 
only remaining parameter of the system. Thus, within this 
regime, the results presented in this paper can be, by rescal-
ing, quantitatively applied to any Newtonian fluid and any 
width b or depth h of the microcavity. If the microcavity is 
not long, i.e., if the flow is not negligible near its end and 
thus communicates with the terminating boundary, then the 
cavity length a becomes a second parameter of the system. 
For the reason of lucidity, we will, however, not pursue 
this ramification here, as the physical essence is contained 
already, and primarily, in the long cavity limit.

The boundary condition at the entrance to the microcav-
ity cannot be simply stated. It depends on the width of the 
main channel unless it was large compared to b and also 
on the exact shape of the junction (e.g., the curvature of 
the channel walls at the junction) as we will demonstrate. 
The latter certainly affects the details of the flow field; in 
particular, it introduces a position offset, but it leaves the 
behavior at large x unaltered.

2.2  Numerical modeling

We use the PDE solver package FEMLAB 3.1 (COMSOL 
AB) to simulate the flow in the three-dimensional experi-
mental situation. Once the agreement with the experimental 
flow fields was confirmed, the numeric simulation gives us 
flexibility to vary the geometry of the channel and extract 
the studied dependencies from the computed flow fields.

2.3  Microfluidic system

Two microfluidic systems were built, a “shallow” cav-
ity with the aspect ratio h/b = 0.38 (h = 45 μm, a = 290 
μm, b = 120 μm) and a “deep” cavity with the aspect ratio 
h/b = 1.40 (h = 140  μm, a = 290 μm, b = 100 μm). Due 
to fabrication limitations, the microcavity entrance of the 
high-aspect-ratio system was rounded, with a curvature 
radius of approximately 100 μm (Fig. 2).

The microfluidic system was fabricated by standard soft 
lithography techniques as described previously (Vrhovec 
et al. 2011). In brief, microchannels were cast in PDMS 
and sealed to a glass cover slide after plasma-induced sur-
face activation. Low-aspect-ratio master molds were pre-
pared by etching SU-8 photoresist on a glass substrate, 
and the high-aspect-ratio master was made in aluminum by 
CNC micromilling with drill radius 0.1 mm (Sodick MC 
430 L, Sodick Europe Ltd).

The flow rate in the microchannels was regulated by 
adjusting the hydrostatic pressure difference between the 

inlet and outlet water reservoirs. The pressure difference 
needed for a mean velocity flow rate v0 = 1 mm/s in the 
main channel was 25.0 mmH2O (245 Pa) for the shallow 
design and 6.3 mmH2O (62 Pa) for the deep design.

2.4  Flow measurements

There exist a number of methods for analyzing the flow in 
a microfluidic system, each having its own advantages and 
disadvantages (Van Dinther et al. 2012), yet in a biology 
laboratory equipped with optical tweezers, the preferred 
method is optical velocimetry (Di Leonardo et al. 2006). 
In brief, a multi-trap AOD-steered optical tweezers (Tweez 
250i, Aresis d.o.o, Ljubljana, Slovenia) with a long working 
distance 60× water immersion objective was used to posi-
tion 5.2-μm-diameter silica microspheres along the sym-
metry axis of the cavity. The flow velocity at a given posi-
tion is proportional to the viscous drag on the microsphere, 
which is measured by detecting the sphere displacement 
from the trap center. For relative velocity measurement, an 
accurate absolute trap stiffness calibration is not essential. A 
dynamic adjustment of the relative trap stiffness allows for 
accurate velocity measurements over more than one order 
of magnitude. If only qualitative assessment of the stream-
lines was needed, we tracked the flow of 100-nm fluorescent 
polystyrene microspheres dispersed in water.

Fig. 2  Two flow regimes in a microcavity, as observed in experi-
ments (a, b) and in numerical modeling (c, d). At the cavity cross 
section aspect ratio h/b = 0.38, the flow is vortex free (a, c), while 
at the aspect ratio h/b = 1.40 a vortex is clearly visible. In princi-
ple, in an infinitely long microcavity, the vortex regime consists of 
a train of alternating vortices, but since the flow velocity decreases 
rapidly along the microcavity, only the first vortex is observed in 
experiments, whereas already the second (in this case revealed by 
numerics) cannot be detected. The experimental images are inverted 
micrographs of 100-nm fluorescent microspheres dispersed in water. 
Traces of individual microspheres in the main channel cannot be dis-
tinguished due to their high velocity (see also Video 1 and 2 in the 
Supplementary Material)



 Microfluid Nanofluid  (2016) 20:33 

1 3

 33  Page 4 of 10

3  Results

In the experiments, we observe two flow regimes depend-
ing on the microcavity cross section aspect ratio. In the 
shallow channel (small h/b), no counter vortex is formed, 
Fig. 2a and Supplementary Video 1, and the flow decays 
monotonically along x. The flow in the deep channel, how-
ever, exhibits a counter vortex, Fig. 2b and Supplementary 
Video 2. Note that this phenomenon is different than the 
flow separation at higher Re (Shen et al. 2015)—we are 
strictly in the Re → 0 limit. Controlling the existence of 
this counter vortex and in particular the exact position of 
the flow separatrix between the primary flow and the first 
counter-vortex flow is crucial for any application-oriented 
design of the microcavity.

The two flow regimes are nicely reproduced by numeri-
cal simulations, Fig. 2c, d. The simulations will also reveal 
that in principle, the vortex regime consists of a train of 
alternating vortices. Due to the rapidly decreasing flow 
velocity along the microcavity only the first vortex is typi-
cally seen in vitro even for an excessively long microcavity 
channel.

3.1  Vortex‑free regime

It is important to realize that in this flow regime, occur-
ring for cavity cross section aspect ratios h/b lower than the 
threshold aspect ratio (h/b)c ≈ 0.51 (which will consist-
ently come along in Sect. 3.2), no vortices are formed even 
in an infinitely long microcavity. Both experimental and 
simulation data (h/b = 0.38) show a monotonic exponen-
tial decrease in the velocity magnitude with x, Figs. 3 and 
4. Within a shallow microcavity approximation, i.e., in the 
limit h/b ≪ 1, one can show analytically (see “Appendix”) 
that both velocity components drop off as exp(−x/x0) , 
Eq. (30), where the decay length equals x0 = b/π. More-
over, the simulation shows a decrease in the decay length 
for increasing h/b, Fig. 5, and confirms the limit b/π for 
h/b → 0.

3.2  Vortex regime

In the deeper cavity (h/b = 1.40), only a single counter 
vortex can be observed in the experiment. The simulation in 
a long cavity, however, suggests that in the vortex regime, 
the long cavity solution in principle consists of a train of 
alternating vortices, Figs. 2d and 6. Such flow morphol-
ogy is compatible with the analytic solution (Shankar and 
Desphande 2000) of the 2D (h/b → ∞) lid-driven cavity 
problem in the Stokes (Re → 0) regime, Eq. (13), Fig. 9, 
presented in the “Appendix”. The driven lid at x = 0 does 
not correspond to the actual experimental circumstances 
at the junction, but this local detail becomes unimportant 

further down the channel (cf. Fig. 9 of “Appendix”). More-
over, further down the channel, the analytic solution is to a 
very good approximation dominated by the first term of the 
expansion Eq. (13) alone. As thus follows from the analytic 
solution, in an infinitely long channel of an infinite depth 
the flow decays exponentially with x, with a rather short 
decay length of b/4.212. The distance between succes-
sive vortex centers is ∼1.396  b, and the flow field decays 
by a factor ∼ 1/357 in going from one vortex to the next 
(Shankar and Desphande 2000; see “Appendix”).

One must be aware, however, that the 2D analytic 
solution is a pertinent high aspect ratio limit only if the 
flow is actually restricted to the xy plane. As we will 
show in Sect. 3.3, in real 3D systems this is only partially 
fulfilled.

When the cavity cross section aspect ratio h/b decreases 
from infinity to experimentally accessible values 
(h/b ∼ 1.5 and lower), the qualitative shape of the flow is 
preserved, but the flow decays somewhat faster, Fig. 5, and 
in particular, the separation of vortices increases, Fig. 6. We 
perform simulations varying h/b over the range of experi-
mentally accessible values and extract from the computed 
velocity fields the position of the flow separatrix before the 
first vortex, i.e., the x coordinate at which vx vanishes for 
y = 0. The dimensionless position of the first separatrix 
s1/b as a function of the cavity cross section aspect ratio 
h/b is shown in Fig. 7. It is well fitted with a power law,

Moreover, we demonstrate that the separatrix position 
depends appreciably on the details of the junction, such 
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Fig. 3  Profile of the normalized velocity vy(x)/v0 at y = 0, z = h/2,  
presented as ln vy/v0 for legibility, at the aspect ratio h/b = 0.38: 
experiment (squares) and numerical modeling (solid line)
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as the curvature of the corners, mainly as a position offset. 
Apart from that, the functional dependence on h/b is not 
significantly affected.

Figure 7 also demonstrates that for h/b > 1, the position 
of the separatrix approaches the value which can be repro-
duced in the 2D simulation. This is of importance as it sig-
nifies the relevance of the 2D solution (also the 2D analytic 
solution Eq. (13)) as the h/b → ∞ limit of the real 3D sys-
tem. The 2D solution is thus meaningful, in spite of the fact 
that further down the microcavity, the flow might escape 
from the xy plane (see Sect. 3.3).

Most importantly, the fits of the flow separatrix position, 
Fig. 7, show that there exists a critical aspect ratio

approaching which the separatrix position is expelled to 
infinity and below which the flow configuration switches to 
the vortex-free regime. Thus, by studying the dependence 
of the flow separatrix position on the cavity cross section 
aspect ratio and finding its critical behavior, we are able to 
identify the two distinct Re → 0 flow regimes of the micro-
cavity. This approach enables us to rigorously distinguish 
between the vortex and the vortex-free regimes and deter-
mine the threshold aspect ratio very precisely.

3.3  Instability of the 2D flow

As soon as h/b > 1, we find numerically that the flow 
which is originally in the xy plane near the entrance to the 
microcavity becomes unstable down the channel and gets 
reorganized. It escapes from the original xy plane becoming 
three dimensional. Interestingly, at larger x it settles again 
as a 2D flow in the xz plane, i.e., in the plane of the lower 
aspect ratio, where it is stable. At a high aspect ratio like 
the one in Fig. 8, the restructuring of the flow takes place 
rather shortly near the entrance, while for aspect ratios 
closer to unity this happens further down the cavity.

Elaborating further details of this 3D flow restructuring 
is beyond the present scope. With this example, we have 
nevertheless pointed out that the flow need not be—and 
in general is not—restricted to the xy plane. This should 
not appear particularly surprising. What is probably less 
obvious, however, and at this point emerges as an empiri-
cal finding, is the fact that the planar flow actually is sta-
ble for h/b < 1 and, moreover, that for h/b > 1 it not only 
becomes unstable developing a full 3D form, but eventually 
settles in the other plane (for which the analogously defined 
aspect ratio is b/h < 1). Note again that this applies to the 
low-Reynolds-number regime. At higher Re, the cavity 

(2)(h/b)c ≈ 0.51

Fig. 4  Numerical modeling for different values of the aspect ratio h/b in the vortex-free flow regime. Left flow streamlines at the cross section 
z = h/2. Right profiles of the normalized velocity vy(x)/v0 at y = 0, z = h/2, presented as ln vy/v0 for legibility

Fig. 5  Dimensionless velocity decay length, obtained by numerical 
modeling, as a function of the aspect ratio h/b. The vertical gray line 
indicates the critical aspect ratio (h/b)c ≈ 0.51, see Sect. 3.2. The 
dashed red line represents the theoretical overall decay length in the 
2D lid-driven cavity (Shankar and Desphande 2000), 1/4.212, which 
represents the high aspect ratio (deep channel) limit of the vortex 
regime
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flows are known to be fully three dimensional (Shankar and 
Desphande 2000; Shen et al. 2015).

Consequently, the solutions of the 2D lid-driven cavity 
or 2D microcavity linked to the main microfluidic chan-
nel, either analytic or numerical, cannot be applied to the 
realistic 3D cases without caution. Regarding the stabil-
ity of the initial planar flow, only for Re → 0 and h/b < 1 
this is not problematic—but the 2D problem is certainly 
not a good approximation in this case. Comparing the 
flow separatrix position for h/b > 1 with the position 

from the 2D simulation, Fig. 7, we nevertheless learned 
that the 2D solution is meaningful at least in the first part 
of the microcavity, before the 3D restructuring of the flow 
takes place.

4  Discussion

Microcavities have been increasingly used in various micro-
fluidic applications. Many such designs comprise a narrow 
entrance and a larger cavity with complex flow patterns (Luo 
et al. 2008; Liu et al. 2008; Stocker 2006). In contrast, the pre-
sent study builds on the work by Yew et al. (2013) and sim-
plifies the design of a rectangular diffusion chamber, which 
does not require additional numerical modeling. Namely, 
Fig. 5 shows the value of the decay constant (1/x0) for a wide 
range of experimentally accessible aspect ratios. Interest-
ingly, the fastest decay occurs near the threshold aspect ratio 
(with 1/x0 ≈ 5.0/b) and not in the limit h/b → 0 (where 
1/x0 = π/b). Of note, an even faster decrease in the velocity 
can be accomplished by placing the microcavity at the T-junc-
tion of the main microchannel (Vrhovec et al. 2011). Another 
important advantage of the rectangular design is that the diffu-
sion into a long rectangular microcavity can be modeled sim-
ply by a 1D diffusion equation (Vrhovec et al. 2011).

Relating our present work to the recent study by Shen 
et al. (2015), we point to a couple of important differ-
ences: (1) Unlike ours, their cavities are not in the long 
limit, (2) in their case the flow transformations are a result 
of increasing Reynolds number, whereas we have Re → 0 
at all times. In particular, their flow separation, which is 
due to the increasing Reynolds number, has little connec-
tion with our vortex regime, which emerges as a result 

Fig. 6  Numerical modeling for different values of the aspect 
ratio h/b in the vortex flow regime in a long microcavity. Left flow 
streamlines at the z = h/2 cross section (the middle of the microcav-

ity). Right profiles of the normalized velocity along the microcavity 
vy(x)/v0 at y = 0, z = h/2, presented as the logarithm ln vy/v0 for 
legibility

Fig. 7  Dimensionless position of the first flow separatrix as a func-
tion of the aspect ratio h/b for two different types of junction corners: 
90° (black squares) and rounded as in Fig. 2b (red circles). Solid lines 
are fits to Eq. (1), yielding (h/b)c = 0.51± 0.03 and β = 0.86± 0.05

. The values from 2D simulations s1/b = 0.25 (90°) and s1/b = 0.67 
(rounded) are indicated by horizontal lines
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of the increased aspect ratio at Re → 0. The value of the 
decay constant 4.35/b presented by Shen et al. (2015) for 
Re = 3 is specific to the particular length and width of their 
cavity: b/h = 3.75 and a/h = 2.5 according to our nota-
tion. In our language, this cavity is not in the long limit, 
as a/b = 2/3 only. Therefore, we cannot expect an exact 
agreement with our Re → 0 value of the decay constant for 
the long cavity at the same aspect ratio h/b = 0.267, which 
is 1/x0 ≈ 3.75/b as read off from Fig. 5.

The aspect ratio of biological microcavities is often close 
to 1, i.e., in the vortex regime. Indeed, counter vortices have 
been observed in microfluidic cavities mimicking capillary 
sprouting (Forouzan et al. 2011). In this context, the for-
mation of vortices may have an important consequence for 
the transport of nutrients into a growing blood vessel. A 
detailed study of mass transport into a microcavity has been 
performed in the vortex-free regime (Yew et al. 2013), yet 
our results indicate that in the vortex regime, the flow and a 
corresponding diffusion pattern can change in a qualitative 
way. For example, one can expect that in the vortex regime, 
the transition from advection- to diffusion-dominated trans-
port may take place rather sharply at the flow separatrix, as 
a contrast to the vortex-free regime where this transition is 
gradual. This feature was indeed observed during diffusion 
of 100-nm microspheres into the microcavity in our experi-
ments (see Supplementary Video 3), but further experimen-
tal, numerical and theoretical studies are needed to fully 
understand the mass transport into a microcavity in the vor-
tex regime.

5  Conclusions

To summarize, we have studied, experimentally, numeri-
cally and theoretically the flow of a Newtonian fluid in 

a long dead-end microcavity extending perpendicularly 
from the main microchannel. In the Stokes (low Reyn-
olds number) limit, we systematically addressed the role 
of the microcavity depth and found that the flow proper-
ties depend decisively on the depth-to-width aspect ratio 
h/b of the microcavity cross section. The results are pre-
sented using dimensionless units and are thus directly 
applicable to arbitrary widths b of the microcavity and 
arbitrary velocities in the main microchannel, provided 
that the microcavity flow is in the low-Reynolds-number 
regime.

Complementing the results obtained by Yew et al. 
(2013), which focused on the vortex-free regime, and 
the results obtained by Shen et al. (2015), which focused 
primarily on flow separation due to increased Reyn-
olds number, we have shown that already at low Reyn-
olds number there exist two qualitatively distinct flow 
configurations, i.e., the vortex and vortex-free regimes, 
separated by a well-defined aspect ratio threshold at 
(h/b)c ≈ 0.51. Below this threshold, in the vortex-free 
regime, the flow velocity decays exponentially away 
from the cavity entrance, with a decay length that scales 
linearly with the cavity width and also depends on the 
aspect ratio. Above this threshold, in the vortex regime, 
a series of counter-flow vortices emerge in the long 
microcavity. The first of these vortices can be readily 
achieved experimentally. The existence and the position 
of the flow separatrix between the primary flow and the 
first counter vortex depend solely on the cross section 
aspect ratio which is an important finding for microcav-
ity design.

Acknowledgments The authors acknowledge the support of the 
Slovenian Research Agency (Grants No. P1-0099, P1-0055, J1-6724) 
and COST Action MP1205.

Fig. 8  Restructuring of the flow 
for h/b > 1. Left escape of the 
flow from the xy plane into the 
xz plane, h/b = 5. Right loga-
rithm of the y and z components 
of the normalized velocity, i.e., 
ln(|vy(x)|/v0) and ln(|vz(x)|/v0) 
in the middle of the microcav-
ity, h/b = 5. In this particular 
example, the escape takes place 
at x/b ≈ 1.5. The dashed line 
is a linear fit of ln(|vz(x)|/v0), 
yielding a slope of −0.283
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Appendix

An incompressible flow v(r) in the absence of external 
forces is described by the continuity and Navier–Stokes 
equations

where p is the pressure and η is the dynamic viscosity of the 
fluid. The continuity Eq. (3) can be satisfied by means of a 
velocity vector potential �,

Taking the curl of Eq. (4) eliminates the pressure and 
results in the vorticity equation,

where ω = ∇ × v is the vorticity, which is by construction 
connected to � by the Poisson equation

Here we make the restriction to steady incompressible 
Stokes (Re = 0) flow. In this case, the vorticity Eq. (6) 
reduces to

and together with Eq. (7) results in the biharmonic equation

Analytic solution for the 2D lid‑driven cavity

Worthful analytic insight is gained by invoking the 2D 
lid-driven cavity (Shankar and Desphande 2000) problem. 
One is aware that the boundary condition at the lid (x = 0 ) 
differs from the experimental situation in which the lid is 
replaced by the junction with the main channel, Fig. 9. 
However, this local detail should not be crucial for the form 
of the flow field at larger distances x further down the cavity.

Let us choose the width of the cavity b as the length unit, 
so that its long walls are at y = ±1/2, and let the velocity 
of the lid be unity. For the 2D lid-driven cavity (h → ∞) 
where

there exist an analytic solution (Shankar and Desphande 
2000) to the biharmonic Eq. (9), now reading

(3)∇ · v = 0,

(4)ρ

[

∂v

∂t
+ (v · ∇)v

]

=−∇p+ η∇2
v,

(5)v = ∇ ×�.

(6)ρ

[

∂ω

∂t
+ (v · ∇)ω

]

= ρ(ω · ∇)v + η∇2
ω,

(7)∇2
� = −ω.

(8)∇2
ω = 0

(9)∇2∇2
� = 0.

(10)v(x, y) = ∇ × Ψ (x, y)êz =

(

∂Ψ

∂y
,−

∂Ψ

∂x
, 0

)

,

(11)ω(x, y) = ω(x, y)êz,

in the form of an infinite series for the stream function:

where R denotes the real part and

To fulfill the boundary conditions Ψ = 0 and ∂Ψ/∂n = 0 
on the side walls, the eigenvalues �n must satisfy 
the transcendental equation sin �n = −�n, the roots 
of which are all complex (Shankar and Desphande 
2000). Let �n be the roots in the first quadrant, ordered 
by the magnitudes of their real parts. Then −�n, �̄n 
and −�̄n are also roots. The principal eigenvalue is 
�1 = �

′
1 + i�′′1 = 4.212+ 2.251 i. In Eq. (13) we have 

taken into account that the cavity is infinitely long 
(hence �n’s with negative real parts are left out) and that 
the real part includes the sum of terms with �n and �̄n.  
The coefficients an are then determined such that the 
sum in Eq. (13) satisfies the boundary conditions Ψ = 0 
and ∂Ψ/∂n = −1 on the lid.

At sufficiently large x, the solution is dominated by 
the principal eigenvalue �1, Fig. 9 right. Disregarding the 

(12)∇2∇2Ψ = 0,

(13)Ψ (x, y) = R

[

∞
∑

n=1

an φn(y) e
−�nx

]

,

(14)φn(y) = y sin(�ny)−
1

2
tan

(

�n

2

)

cos(�ny).

4

3

2

1

0
–0.5 0 0.5

x

y

Fig. 9  Velocity streamlines in a narrow 2D cavity: numerical solu-
tions of the lid-driven cavity (left) and the cavity connected to the 
main channel (middle). Right velocity field obtained from the first 
term of the analytic solution for the stream function, Eq. (13)
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modulation due to the alternating vortices, the veloc-
ity magnitude thus drops off as e−�

′
1x, i.e., with the char-

acteristic length 1/4.212 (in units of the cavity width 
b). The distance between successive vortex centers is 
∼ π/�′′1 ∼ 1.396 and the flow field decays by a factor 
exp(−π�′1/�

′′
1) ∼ 1/357 in going from one vortex center to 

the next.

Large but finite (h ≪ b)

It is illuminating to encompass the qualitative behavior of 
the flow configuration when departing from the 2D geom-
etry, i.e., for a large but finite cavity depth h/b. In a minimal 
approach, one can start with the 2D solution, Eqs. (13) and 
(10),

including in Ψ  only the aforementioned leading term, and 
decorate it with a simple z dependence and a correction 
depending on x,

where the complex number �� ≡ ��
′ + i��

′′ is the cor-
rection to be determined. The length unit is b as in the pre-
vious section. The velocity field Eq. (16) is of course not a 
solution of Eq. (8), but one can minimize the norm of the 
deviation of ∇2

ω from zero,

and therefrom determine the correction ��. Here ��
′ rep-

resents the correction of the decay rate in the x direction 
with respect to the 2D solution, while ��

′′ represents the 
correction of the wave vector, i.e., a shift of the positions of 
separatrices and vortex centers with respect to the 2D solu-
tion. The dependence of both corrections on h is presented 
in Fig. 10.

(15)v0(x, y) =

(

∂Ψ

∂y
,−

∂Ψ

∂x

)

,

(16)v(x, y, z) = v0(x, y) e
−�� x sin(πz/h),

(17)
∂

∂��

∫

dxdy

∣

∣

∣
∇2 ∇ × v

∣

∣

∣

2
= 0,

The exact functional dependence of ��
′(x) and ��

′′(x) 
is insignificant as it is subject to the choice of the trial func-
tion in Eq. (16). What is relevant, however, is the qualita-
tive result: When the cavity depth decreases, the velocity 
decay length decreases, while the x coordinate, s1, of the 
flow separatrix increases. Both dependences are consistent 
with the simulation results presented in Figs. 5, 6 and 7.

Shallow cavity limit (h ≪ b)

Here we describe a cavity of finite depth much smaller than 
its width, h ≪ b (small microcavity aspect ratio). In this 
shallow limit, no counter vortex is formed down the cavity. 
The cavity is defined by −b/2 < y < b/2, 0 < z < h, and 
x > 0. The velocity lies in the xy plane.

Suggested by numeric simulations, there exist two 
regions with distinct flow attenuation profiles along x. In 
the vicinity of the lid, i.e., at distances small compared to b, 
the velocity decreases with a characteristic length defined 
by h. At larger x, however, despite the fact that the fluid is 
severely confined in the z direction, the characteristic decay 
length is defined by b, not by h as we will see, and this is 
dictated by the continuity requirement.

Near flow (x ≪ b)

Next to the lid, at x ≪ b, the flow can be approximated by 
shear, v = v(x, z) êy, for which the continuity condition is 
satisfied by construction and the Stokes equation reduces to

The solution is:

The leading contribution (n = 1) thus decays with the char-
acteristic length h/π.

Far flow (x ≫ b)

At x ≫ b, one has to deal with both the continuity Eq. (3),

and the vorticity Eq. (8), which now takes the form

The Ansatz with a plausible y dependence of the velocity 
components, disregarding the no-slip boundary condition 
at y = ±b/2 (which is not significant in the shallow limit 
because vx drops to 0 no sooner than only in a thin bound-
ary layer ∼ h),

(18)∇2v = 0.

(19)v(x, z) =
∑

n=1

vn sin(knz) e
−knx, kn = nπ/h.

(20)
∂vx

∂x
+

∂vy

∂y
= 0,

(21)∇2

(

−
∂vy

∂z
,
∂vx

∂z
,
∂vy

∂x
−

∂vx

∂y

)

= 0.0 5 10 15 20

0.05

0

0.05

h b

b

Fig. 10  The corrections ��
′ and ��

′′ as functions of the cavity depth 
h, representing the x-profile deviation of the 3D trial configuration 
from the 2D solution. With decreasing h/b, the decay exponent ��

′ 
increases and the wavenumber ��

′′ decreases. The latter shifts the 
flow separatrices to larger x
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respects the continuity, Eq. (20), under the condition

In the shallow cavity limit, we neglect the xy part of the 
Laplacian in Eq. (21),

obtaining

The first two components of Eq. (25) define the parabolic z 
profile of both velocity components, f (z) = z(h− z). Tak-
ing this into account in the third component of Eq. (25), it 
then follows that

which is also fulfilled by the Ansatz Eq. (22), provided that

The conditions Eqs. (23) and (27) furnish the solution

Satisfying the boundary condition dictated by the incom-
pressibility, i.e., vy = 0 for y = ±b/2, we require

Hence, the leading contribution (n = 1) in the infinitely 
long cavity is

with ky = π/b. In the shallow cavity limit, the character-
istic decay length of the velocity magnitude in the far flow 
region is thus b/π.

(22)
vx = A f (z) sin(kyy) e

−�x ,

vy = B f (z) cos(kyy) e
−�x ,

(23)�A+ kyB = 0.

(24)∇2 ≈
∂2

∂z2
,

(25)

(

−
∂3vy

∂z3
,
∂3vx

∂z3
,
∂2

∂z2

[

∂vy

∂x
−

∂vx

∂y

])

= 0.

(26)
∂vy

∂x
−

∂vx

∂y
= 0,

(27)�B+ kyA = 0.

(28)� = ±ky, B = ∓A.

(29)ky =
(2n− 1)π

b
, n = 1, 2, 3...

(30)
vx = A z(h− z) sin(kyy) e

−kyx,

vy = −A z(h− z) cos(kyy) e
−kyx,
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