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We introduce a measure for energetic efficiency of biological cilia
acting individually or collectively and numerically determine the
optimal beating patterns according to this criterion. Maximizing
the efficiency of a single cilium leads to curly, often symmetric, and
somewhat counterintuitive patterns. However, when looking at a
densely ciliated surface, the optimal patterns become remarkably
similar to what is observed in microorganisms like Paramecium.
The optimal beating pattern then consists of a fast effective stroke
and a slow sweeping recovery stroke. Metachronal coordination
is essential for efficient pumping and the highest efficiency is
achieved with antiplectic waves. Efficiency also increases with an
increasing density of cilia up to the point where crowding becomes
a problem. We finally relate the pumping efficiency of cilia to the
swimming efficiency of a spherical microorganism and show that
the experimentally estimated efficiency of Paramecium is surpris-
ingly close to the theoretically possible optimum.

low Reynolds number | hydrodynamics | microswimmers | metachronal
waves | stroke kinematics

any biological systems have evolved to work with a very

high energetic efficiency. For example, muscle can convert
the free energy of ATP hydrolysis to mechanical work with >50%
efficiency (1), the F1-FO ATP synthase converts electrochemical
energy of protons to chemical energy stored in ATP molecules
with even higher efficiency (2), etc. At first glance, the beating of
cilia and flagella does not fall into the category of processes with
such a high efficiency. Cilia are hair-like protrusions that beat
in an asymmetric fashion to pump the fluid in the direction of
their effective stroke (3). They propel certain protozoa, such as
Paramecium, and also fulfill a number of functions in mammals,
including mucous clearance from airways, left-right asymmetry
determination, and transport of an egg cell in fallopian tubes.
Lighthill (4) defines the efficiency of a swimming microorganism
as the power that would be needed to drag an object of the same
size with the same speed through viscous fluid, divided by the
actually dissipated power. Although the efficiency defined in this
way could theoretically even exceed 100% (5), the actual swim-
ming efficiencies are of the order of 1% (6, 7). In his legendary
paper on life at low Reynolds number (8) Purcell stated that
swimming microorganisms have a poor efficiency, but that the en-
ergy expenditure for swimming is so small that it is of no relevance
for them (he uses the analogy of “driving a Datsun [a fuel-efficient
car of the period] in Saudi Arabia”) (ref. 8, p. 9). Nevertheless, later
studies show that swimming efficiency is important in micro-
organisms. In Paramecium, more than half of the total energy
consumption is needed for ciliary propulsion (9).

When applied to ciliary propulsion, Lighthill’s efficiency (4)
has some drawbacks. For one, it is not a direct criterion for the
hydrodynamic efficiency of cilia as it also depends on the size and
shape of the whole swimmer. Besides that it is, naturally, appli-
cable only for swimmers and not for other systems involving
ciliary fluid transport with a variety of functions, like left-right
asymmetry determination (10). We therefore propose a different
criterion for efficiency at the level of a single cilium or a carpet of
cilia. A first thought might be to define it as the volume flow rate
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of the transported fluid, divided by the dissipated power. How-
ever, as the flow rate scales linearly with the velocity, but the
dissipation quadratically, this criterion would yield the highest
efficiency for infinitesimally slow cilia, just like optimizing the
fuel consumption of a road vehicle alone might lead to fitting it
with an infinitesimally weak engine. Instead, like engineers trying
to optimize the fuel consumption at a given speed, the well-
posed question is which beating pattern of a cilium will achieve
a certain flow rate with the smallest possible dissipation.

The problem of finding the optimal strokes of hypothetical
microswimmers has drawn a lot of attention in recent years.
Problems that have been solved include the optimal stroke pat-
tern of Purcell’s three-link swimmer (11), an ideal elastic flagel-
lum (12), a shape-changing body (13), a two- and a three-sphere
swimmer (14), and a spherical squirmer (5). Most recently, Tam
and Hosoi optimized the stroke patterns of Chlamydomonas fla-
gella (15). However, all these studies are still far from the com-
plexity of a ciliary beat with an arbitrary 3D shape, let alone from
an infinite field of interacting cilia. In addition, they were all
performed for the swimming efficiency of the whole microor-
ganism, whereas our goal is to optimize the pumping efficiency
at the level of a single cilium, which can be applicable to a much
greater variety of ciliary systems.

So we propose a cilium embedded in an infinite plane (at z =
0) and pumping fluid in the direction of the positive x axis. We
define the volume flow rate Q as the average flux through a half-
plane perpendicular to the direction of pumping (16). With P we
denote the average power with which the cilium acts on the fluid,
which is identical to the total dissipated power in the fluid-filled
half-space. We then define the efficiency in a way that is in-
dependent of the beating frequency w as

Q2

P (1]

€
As we show in SI Text, section 1, minimizing the dissipated power
P for a constant volume flow rate Q is equivalent to maximizing e
at a constant frequency. A similar argument for swimming effi-
ciency has already been brought forward by Avron et al. (13).

Furthermore, a general consequence of low Reynolds number
hydrodynamics is that the volume flow depends only on the
shape of the stroke and on the frequency, but not on the actual
time dependence of the motion within a cycle. This finding is the
basis of Purcell’s scallop theorem (8). As a consequence, the
optimum stroke always has a dissipation rate constant in time.
We show this in SI Text, section 2.

We can make the efficiency e completely dimensionless if we
factor out the effects of the ciliary length L, the beating fre-
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quency w, and the fluid viscosity 7. The velocity with which
a point on the cilium moves scales with wL and the linear force
density (force per unit length) with nwL. The total dissipated
power P, obtained by integration of the product of the Velocily
and linear force density over the length, then scales with yao’L".
The volume flow rate Q scales with wL>. Finally, the efficiency e
scales with /. The dimensionless efficiency can therefore be
defined as

€ =L 3pe. [2]

When optimizing the efficiency of ciliary carpets, we have to use
the measures of volume flow and dissipation per unit area, rather
than per cilium. We introduce the surface density of cilia p,
which is 1/d* on a square lattice. In the following we show that
the volume flow generated per unit area, pQ, is also equivalent to
the flow velocity above the ciliary layer. The fluid velocity above
an infinite ciliated surface namely becomes homogeneous at
a distance sufficiently larger than the ciliary length and meta-
chronal wavelength. The far field of the flow induced by a single
cilium located at the origin and pumping fluid in the direction of
the x axis has the form (17)

v(x,y,z) = A)Eé, [3]

4
with an arbitrary amplitude A. For this field the volume flow
rate is

Q:/ dy/ dzvy(x,y,2) =§A [4]
— 0 0

and the velocity above an infinite field of such cilia is

Ve = / dx/ dypvy(—x,—y,z) = ?/)A = 7pQ, [5]

which is independent of z. In this regime, one can simplify the
description of cilia by replacing them with a surface slip term
with velocity v, (18).

We now define the collective efficiency as e. = (pQ)*/(pP) and
in dimensionless form as

,_npQ
€=7 i [6]
€. is a function of the beat shape, the dimensionless density pLZ,
and the metachronal coordination, which is explained later.
Additionally, for a single cilium or for collective cilia the effi-
ciency also depends on the dimensionless radius of the cilium,
a/L, but this dependence is rather weak, of logarithmic order.

At this point we note that our definition of efficiency is dif-
ferent from that used by Gueron and Levit-Gurevich (19). They
define efficiency as volume flux through a specifically chosen
rectangle above the group of cilia divided by the dissipated
power. Whereas this measure is useful for studying the effect
of coupling and metachronal coordination (they show that the
collective efficiency of a group of cilia increases with its size), it
lacks the scale invariance discussed above. Gauger et al. (20)
studied a model for individual and collective magnetically driven
artificial cilia. Rather than introducing a single measure for the
efficiency, they studied the pumping performance (which is the
more relevant quantity in artificial systems) and dissipation
separately. They showed that the pumping performance per cil-
ium can be improved with the proper choice of the metachronal
wave vector, whereas the dissipation per cilium remains largely
constant. Both studies were limited to 2D geometry (planar cilia
arranged in a linear row) and neither of them uses a scale-
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invariant efficiency criterion proposed here. On the other hand,
Lighthill’s criterion for swimming organisms shares the same
scaling properties as ours (it scales with the square of the
swimming velocity, divided by dissipation), but differs in defini-
tion because it measures the swimming and not the pumping
efficiency. At the end we show how the two measures are related
to each other for a spherical swimmer.

Our goal is to find the beating patterns that have the highest
possible efficiency for a single cilium, as well as the beating
patterns combined with the density and the wave vector that give
the highest efficiency of a ciliated surface.

Model

We describe the cilium as a chain of N touching beads with radii
a. The first bead of a cilium has the center position x; = (0, 0, a),
and each next bead in the chain is located at x;.1 = x; + 2a(siné;
cosg;, sind; sing;, cosd;). The maximum curvature of the cilium is
limited by the condition

(Xis1 = Xi) (Xi = Xi—1) = (2a)7COSpa- [71

Naturally, beads cannot overlap with the surface (z; > a) or with
each other, |x; —x;| > 2a.

We describe the hydrodynamics using the mobility matrix
formalism. If the force acting on bead i is F;, the resulting
velocities are

d
X = jZM,; JF;. (8]

In this formalism, each element M;; is itself a 3 X 3 matrix,
corresponding to three spatial dimensions. In general, the above
equation should also include angular velocities and torques, but
they are negligible for small beads when the surface speeds due
to rotational motion are much smaller than those due to trans-
lational motion. The mobility matrix is symmetric and positive
definite (21). Therefore, one can always invert it to obtain the
friction matrix I' = M~", which determines the forces on particles
moving with known velocities

Fi =) T [9]
J

If the particles were at large distances relative to their sizes, the
elements of the mobility matrix would be determined by Blake’s
tensor (22), which represents the Green function of the Stokes
flow in the presence of a no-slip boundary. In our case the
condition of large interparticle distances is not fulfilled and we
use the next higher approximation, which is the Rotne-Prager
tensor in the presence of a boundary, as described in a previous
paper (23).

The volume flow rate in the x direction, averaged over one
beat period 7, depends on x components of forces acting on
particles and their heights z above the boundary (16):

T
0- % / izj:zi(t)Fx,i(t)dt. [10]

0 7N

The dissipation rate is simply the total power needed to move the
beads against viscous drag,

P= in-F,«, [11]

We numerically maximized the quantity QP for a set of angles
Pmax and different numbers of beads. We used the sequential
quadratic programming algorithm (SQP) from Numerical
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Algorithms Group (NAG) numerical libraries. The full details of
the numerical procedure are given in SI Text, section 3.

To study the collective efficiency and metachronal coordi-
nation, we studied an array of N, x N, cilia (unit cell) on a
square lattice with a lattice constant d. We introduced periodic
boundary conditions by adding hydrodynamic interactions be-
tween particles and the representations beyond lattice bound-
aries. So if a certain element in the mobility matrix describing
interaction between particles at x; and x; is M, j(x;, X;), we replace
it by M/ (xi,x;) = 30 _ M j(xi,x; + pAe,+qAe ). Here A =
N.d denotes the size of the unit cell. For the sake of numerical
efficiency, we used the full Rotne-Prager form for the first o
instances (p, ¢ = —o, ... , 0) and approximated the interaction
with its long-range limit, independent of the actual particle
positions, for the rest (SI Text, section 3).

We expect the optimal solution to have the form of meta-
chronal waves with a wave vector k = (k, k;) = (27/A)(x, k). To
satisfy the periodic boundary conditions, x, and «, have to be
integer numbers, e.g., between 0 and N, — 1.

Results

Single-Particle Model. We first start with some simple models that
are not necessarily feasible in practice, but allow important in-
sight into how the optimum is achieved. We follow the spirit of
the model used to study the synchronization of cilia (17), where
we replace the cilium by a small spherical particle. There are
many swimmer models building on similar assumptions, for
example the three-sphere swimmer (24), and they all have in
common that they assume the connections between spheres to be
very thin and neglect any hydrodynamic forces acting on them.

So the first hypothetical model we study is a single sphere
of radius a that can move along an arbitrary path x(wt) in the
half space above the boundary, but to mimic the tip of a cilium
it has to stay within the distance L of the origin, |x| = L — a.
To simplify the calculation we also assume that the sphere
is small, @ « L. In this limit, we can neglect the effect of
the boundary on the hydrodynamic drag, which is then always
y = 6ana. The dissipated power is then simply P = yx’.
Because it has to be constant in time, we can also write it as

P =y*/T?

(12]

()

with ¢ denoting the total distance traveled within one cycle and
T its period. The average volume flow follows from Eq. 10 as

T
! z(t)yx(t)dt = %a 7{ zdx = %,

[13]
mT /o

where S is the area of the particle trajectory, projected onto the
x — z plane. The resulting efficiency is (Eq. 1)

Q*> 65%
€="F%= . [14]
To find the optimal path, we thus have to maximize the area-to-
circumference ratio of the path, while fulfilling the constraints
z > 0 and |x| = L. Obviously, there is no benefit in going out of
the x — z plane, but there is cost associated with it. Therefore, the
optimum trajectories will be planar. As in any curve that mini-
mizes its circumference at a fixed surface area, the unconstrained
segments of the trajectory have to be circle arcs. The curve has
the shape shown in Fig. 14. A numerical solution shows that the
area-to-circumference ratio is maximal if the angle « defined in
Fig. 14 has the value @ = 0.483. The resulting maximal efficiency
in the limit a <« L is € = 0.192 Lza/n, or, in dimensionless form,
€ =0.192a/L.

Solutions for finite values of a/L are shown in Fig. 1B and their
efficiencies in Fig. 1D. The highest possible numerical efficiency
of this model is €’ = 0.0087, which is achieved at a/L = 0.13.

Another version of the single-particle model is one in which the
particle has to maintain a fixed distance (L — a) from the origin,
while it is free to move along the surface of a sphere (Fig. 1C).
This is an additional constraint and can therefore only reduce the
achievable efficiency. As shown by the red line in Fig. 1D, the
efficiency indeed lies somewhat below that of the model with a
variable distance and reaches a maximum value of €’ = 0.0065.

N Particles, Stiff Cilium. The next minimalistic model we study is
a stiff cilium: a straight chain of N beads with radius ¢ and a total
length of L = 2Na that can rotate freely around the center of
the first bead. The problem is related to artificial cilia driven by
a magnetic field (20, 23, 25) in which the orientation of the cil-
ium largely (although not completely) follows the direction of
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Optimal trajectories of the one-particle model. (A) Idealized case of a small particle restricted to |x| < L. The solution consists of piecewise circular arcs,

determined by geometric parameters a and r/L. (B) Numerical solutions for finite-sized particles, plotted for different ratios a/L. (C) Optimal path for a particle
at a constant distance from the origin, x| = L — a, with a = 0.1L. The transparent hemisphere symbolizes the surface on which the particle can move. (D)
Dimensionless efficiency €’ as a function of the dimensionless particle radius a/L. The black line shows the model with variable distance and the red line that
with a fixed distance from the origin. The dashed line shows the limit of small radii (a < L), € = 0.192a/L.
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the magnetic field. A related optimization has been performed
by Smith et al. (16), but with two important differences. First,
Smith et al. optimize the volume flow alone and not the effi-
ciency. Their optimal stroke therefore touches the surface during
the recovery stroke, whereas ours has to keep some distance to
limit the dissipation. Second, they restrict themselves to cilia
beating along tilted cones, whereas we allow any arbitrary pattern.

The motion of a stiff cilium on its optimal trajectory is shown
in Fig. 24. The path of its tip closely resembles that of a single
sphere at a fixed radius. The resulting dimensionless efficiency
for N = 20 beads is €’ = 0.00535.

N Particles, Flexible Cilium. As the next level of complexity, and at
the same time the first realistic description of biological cilia, we
now study a flexible cilium consisting of N spherical particles (we
use N = 10 and N = 20). The bending angle per particle is re-
stricted to fmax (Eq. 7). Such a constraint is necessary for two
reasons. For one, the curvature of a biological cilium is restricted
by the bending rigidity of the axoneme. In addition, our N-par-
ticle model veritably represents a continuous cilium only if the
curvature radius is sufficiently larger than the size of a sphere.
Examples of beating patterns obtained by numerical optimization
are shown in Fig. 2 B and C. Fig. 2D shows the dimensionless
efficiency €’ as a function of fx.

It is instructive to look at fundamental symmetries of the
problem at this point. First, as in any of the problems studied
here, it is symmetric upon reflectiony — —y. For every clockwise
beat, there is an equivalent counterclockwise beat with the same
efficiency. All cycles discussed here spontaneously break the y
symmetry. In addition, the equations are invariant upon re-
flection x — —x with simultaneous time reversal, ¢ — —t. This
symmetry can be broken or not at the efficiency maximum. In-
terestingly, whether it is broken depends on the allowed bending
between adjacent elements .. For example, the solution
shown in Fig. 2B is xt symmetric, whereas the one in Fig. 2C
is not.

Multiple Cilia and Metachronal Waves. We solve the optimization
problem of N, x N, cilia (N, = 12) with periodic boundary con-
ditions by imposing a wave vector (k,, k,), finding the optimal
solution for that vector, and repeating the procedure for N, X N,
wave vectors. Examples of optimal solutions for six different wave
vectors are shown in Fig. 3 A-F. The efficiency € as a function of
the wave vector is shown in Fig. 3G. Note that all solutions de-
termined in this section are for counterclockwise beating (viewed
from above). For clockwise strokes the y component of the wave

e X

vector would have the opposite sign. Optimal solutions for four
different values of the interciliary distance d are shown in Fig. 4 4—
D and the optimal efficiency as a function of d in Fig. 4F.

Fig. 3G shows that the efficiency depends more strongly on the
longitudinal (k,) component of the wave vector than on the
lateral one (k,). This finding could partly be due to the nature of
the hydrodynamic interaction, which is stronger in the longitu-
dinal direction, and partly because the cilia exert larger motion
in the longitudinal direction and therefore come closer to their
neighbors along the x axis. Antiplectic metachronal waves (waves
propagate in the opposite direction from the fluid pumping)
generally have a higher efficiency than symplectic, but the fine
structure is much more complex. For low ciliary densities, the
optimal solution is found for waves propagating along the x axis.
For higher densities solutions with a positive k, are more effi-
cient, which means that the waves are dexio-antiplectic. Effi-
ciency also grows with increasing density. However, when the
interciliary distance reaches d = 0.25L, crowding becomes a
problem and the efficiency drops again. At even higher densities
the solution becomes increasingly difficult to find because of the
complicated topology of densely packed cilia. Another problem
is that the wavelength of the optimal solution, relative to the
lattice constant, becomes increasingly long at high densities,
which would require a unit cell larger than 12 x 12 used in our
calculations.

Swimming Efficiency of a Ciliated Microorganism. We can finally use
these results to estimate the maximum possible swimming effi-
ciency of a ciliated microorganism. For the sake of simplicity, we
assume that the swimmer has a spherical shape with radius R.
According to Lighthill’s definition, the swimming efficiency is
defined as

B 6mnRV 2

: [15]
Ptot

€L

where V' is the velocity and Py the total dissipated power (4).
Assuming that the layer of cilia is thin in comparison with the
size of the organism (L < R), the swimming velocity }" can be
calculated as (18, 26)

1 T
=— [vd*s=— 0)27sin%6do. 16
IR vd-s i /0 v(0)2zsin [16]

Here v(0) is the propulsion velocity above the ciliated layer. The
dissipation can be expressed as
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Fig. 2. Optimal beating patterns of a cilium consisting of N = 20 particles with different allowed bending angles fmax. The gray surface shows the projection
of the tip trajectory on the x — y plane. (A) A stiff cilium, fmax = 0. (B) A flexible cilium, fmax = 20°. The optimal stroke is symmetric in the x direction. (C) Flexible
cilium, fmax = 30°. The symmetry in the x direction is broken. (D) Dimensionless efficiency €’ as a function of imax. The black line shows the optimal symmetric
solution and the red line the asymmetric solution in cases where it is more efficient. The dashed line shows the maximum efficiency for N = 10 and double Smax

(corresponding to the same curvature).
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Fig. 3. Optimal solutions at fixed wave vectors for interciliary distance d = 1.0 X L, N = 20, imax = 15°, and N, = 12. (A-F) Optimal solutions for wave vectors
(kx ky) = (0, 0) (A), (-7/(2d), 0) (B), (5z/(6d), 0) (C), (—2x/(3d), x/d) (D), (0, —=/(3d)) (E), and (0, #/3d)) (F). The blue arrow (x axis) denotes the direction of
pumping and the red arrow the wavelength and direction of metachronal wave propagation. (G) Efficiency €/ (red color represents high efficiency) as
a function of the wave vector (k,, k,). The maximum efficiency is in this case achieved for k = (—z/(2d), 0) and antiplectic waves are generally more efficient
than symplectic ones. The synchronous solution (0, 0) represents the global minimum of efficiency.

n 2R2 n 8 R2 2
Pt = / P — / P(0)22Rsin0d0 — X1 / 12(0)sin6do. o = SR 201
0 IL'EC/L 0 377.'6‘;[4
(171 Together, these equations give Lighthill’s efficiency
In the second equality we used the definition (Eq. 6), as well as
the relationship between v and pQ (Eq. 5). To obtain the max- € = ”21_‘ €. [21]
R

imum V at a given Py, the two functional derivatives should be

related through a Lagrange multiplier With a maximum €, ~ 0.016 and a typical ratio L/R ~ 0.1, we

obtain € ~ 0.016.

V] - AEP tor[V] [18] For comparison, an optimized envelope model yields an effi-
ov(0) ov(0) ciency ~3% with the same parameters (if we translate the ciliary
length into maximal displacement of the envelope) (5), which
shows that the latter is a relatively good approximation for cilia if
they operate close to the optimal way.

which is fulfilled if the angular dependence has the form v(0) =
Vo sin 6. This result leads to

V =v [19] Discussion
We introduced a scale invariant efficiency measure for the fluid
and pumping by cilia and started with optimizing three simple in-

E 0.020 1+
[ G—ON=20
i E—EIN=10
0.015\
, i
€ 0.010F
0.005F
L | 1 1
0.0005 0.5 1 1.5 2

Fig. 4. Optimal solutions for various interciliary distances: d = 1.0L (A), d = 0.7L (B), d = 0.5L (C), and d = 0.25L (D). For reasons of clarity the front rows of cilia
are omitted and instead of individual spheres used in the calculation a tube connecting them is shown. (E) Highest efficiency €/ as a function of the interciliary
distance d for cilia consisting of N = 20 (circles) and N = 10 (squares) spheres. For N = 10, we set fmax = 30° to allow the same maximum curvature.
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structive systems: a free sphere, a sphere at a constant distance
from the origin, and a stiff cilium. Of those three, the free sphere
can reach the highest efficiency. However, they are all topped by
a flexible cilium. The thickness of a cilium has only a small effect
on its efficiency, which strengthens our choice to describe the
cilium as a chain of beads. Depending on the allowed bending,
the flexible cilium can have different shapes of the optimal
beating pattern. In most cases the cilium curls up during the
recovery stroke, rather than sweeping along the surface. Such
shapes appear “unnatural” if we compare them with those ob-
served in microorganisms (27).

However, the collective optimization of ciliary carpets leads to
beating patterns that are strikingly similar to what is observed in
many ciliated microorganisms. Unlike isolated cilia, they contain
a recovery stroke during which they sweep along the surface.
This result is primarily due to the fact that beating patterns that
are optimal for a single cilium (e.g., as shown in Fig. 2B) are not
possible on a dense grid due to steric hindrance. The sweeping
recovery stroke, on the other hand, allows dense stacking of cilia
(best seen in Fig. 4D), which further reduces drag as well as
backward flow. The optimal effective stroke becomes signifi-
cantly faster than the recovery stroke. Whereas a single cilium
reaches its highest efficiency if the effective stroke takes ~45% of
the cycle, the optimal fraction is ~20—25% for densely packed
cilia. A similar ratio has been observed in Paramecium (28). The
distance between adjacent cilia in Paramecium is between 0.15L
and 0.25L (29), consistent with the predicted optimum around
d = 0.25L. It is interesting that the efficiency of any other wave
vector is higher than the efficiency of the synchronous solution
(wave vector 0). This result is in agreement with some previous
simpler, one-dimensional models (20), but has not yet been
shown on a 2D lattice. We also find that antiplectic waves are
generally more efficient than symplectic, although symplectic
solutions with a relatively high efficiency exist, too. For high
densities and cilia beating counterclockwise, the waves become
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almost dexioplectic (meaning that the effective stroke points to
the right of the wave propagation) and the wavelength becomes
similar to the cilium length L—both findings are in agreement
with observations on Paramecium (30, 3). For cilia beating
clockwise, laeoplectic waves would be more efficient, which is
indeed observed (31). Although the effect of thickness is small, it
is interesting to note that thicker cilia have a slightly higher ef-
ficiency when isolated or at low surface densities, but are out-
performed by thinner cilia at high densities.

The total energetic efficiency of swimming in Paramecium has
been measured as 0.078% (9). This number includes losses in
metabolism and force generation—the hydrodynamic swimming
efficiency alone has been estimated as 0.77%. This number
comes close (by a factor of 2) to our result for the maximally
possible Lighthill efficiency of a spherical ciliated swimmer, e; ~
0.016. A biflagellate swimmer like Chlamydomonas has a lower
theoretical efficiency of 0.008 (15), but it is still within the same
order of magnitude.

Although efficiencies <1% seem low, we have shown that
Paramecium still works remarkably close to the maximum effi-
ciency that can be achieved with its length of cilia. Whereas
longer cilia might have a higher swimming efficiency, there are
other considerations that are not included in this purely hydro-
dynamic study. For example, the bending moments and the
power output per ciliary length can be limiting (32). Thus, our
study shows that at least for ciliates like Paramecium, Purcell’s
view that efficiency is irrelevant for ciliary propulsion has to be
revisited. Efficiency of swimming does matter for them, and in
their own world they have well evolved to swim remarkably close
to the optimal way.
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